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Abstract Competitive retro-cycloaddition in [60] and [70]fullerene homodimers (1a,1c) as well as
[60]/[70]heterodimer (1b), linked through 2-pyrazolino-pyrrolidino bridges, has been studied by means
of HPLC, mass spectrometry, and theoretical calculations at the density functional theory (DFT) level
using the two-layered ONIOM approach. The results of these investigations indicate that the retro-
cycloaddition reaction of pyrrolidinofullerenes is favored compared to the retro-cycloaddition reaction
of 2-pyrazolinofullerenes in compounds la-c. Evidences of the occurrence of this process have been
observed both by HPLC and MS-MALDI, these findings being in good agreement with that predicted by

theoretical calculations.

Introduction

Since fullerenes! and other molecular carbon nanostructures? were discovered, a remarkable effort has
been devoted to their chemical modification.® Moreover, owing to their exceptional electronic and
geometrical characteristics, fullerenes represent an exceptional scenario for testing a wide variety of new
reactions.* Some of us have previously reported the thermally induced transition metal catalyzed
quantitative  retro-cycloaddition  reaction of  pyrrolidino[3,4:1,2]fullerenes® as well as

isoxazolino[3,4:1,2]fullerenes,® and proved its convenience as a new and useful protection-deprotection



protocol.® Recently, this methodology has been also applied to induce the retro-cycloaddition process in
2-pyrazolino[3,4:1,2]fullerenes.” The results of that study clearly indicated that C-substitution on the
pyrazole ring plays an important role on the course of the reaction, as I|3-diaryl-2-
pyrazolino[60]fullerenes are thermally stable under these conditions and form Ceo in very low yields. In
contrast, 1-aryl-3-alkyl-2-pyrazolino derivatives are more vulnerable to these experimental conditions,
undergoing an efficient thermally induced transition metal catalyzed retro-cycloaddition reaction. In a
previous manuscript,® we have reported the preparation and photovoltaic applications of a new family of
fullerene based compounds, namely, soluble [60] and [70]fullerene homodimers (1a,1c) and the
[60]/[70]heterodimer (1b), linked through 2-pyrazolino-pyrrolidino bridges (Figure 1). These dimers
represent the first example of covalently bonded pyrrolidino-pyrazolino-fullerene dimers, despite the
fact that, pyrrolidinofullerenes® and pyrazolinofullerenes,'® are well known in fullerene chemistry and
have been extensively studied. In the present paper we report on the competitive retro-cycloaddition
reaction that takes place in these dimers (1a-c), by means of thermally induced treatment in the presence
of an excess of dipolarophile (maleic anhydride), as well as copper triflate (CuOTf2). The competitive
retrocycloaddition process that takes place on these dimers has also been studied by mass spectrometry
and the experimental findings are underpinned by theoretical calculations at the density functional

theory (DFT) level, using the two-layered ONIOM approach.
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Figure 1: [60] and [70]fullerene homodimers (1a,1c) and the [60]/[70]heterodimer (1b), linked through
2-pyrazolino-pyrrolidino bridges. Thermally generated azomethyne ylide trapped by the maleic

anhydride (2).

Analysis of the experimental and theoretical results obtained by these three different approaches reveals
that the retro-cycloaddition occurs preferentially on the pyrrolidinofullerene moiety, due to the lower

activation barrier and the slightly more favorable reaction energy for the entire process.

Results and discussion.

Thermal treatment In order to investigate the thermal stability of these dimers, compound 1a has been
submitted to the same experimental conditions previously reported for other fullerene-fused pentagonal
heterocyclic rings.>%” Compound 1a was first heated at reflux in 0-DCB for 24 h, and then a small
amount (0.5 ml) of the reaction mixture was collected, diluted, and submitted to HPLC analysis (Table
1, 0-DCB-24 h). The results of this experiment showed that pristine Ceo Was obtained in moderate yield
(50%) under thermal treatment. Then, we carried out the same experiment by adding a large excess (30
eq.) of maleic anhydride as an efficient dipolarophile in order to trap the in situ generated dipole (Table
1, MA-24h). Analysis of this experiment by HPLC showed that pristine Cso Was obtained in a better
yield (66 %) together with a new peak located at 11.25 min. (toluene 1mL/min.), which was identified

by the detector of the HPLC as a fullerene-based compound.
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Figure 2: Chromatogram of the thermal retrocycloaddition of 1a in the presence of maleic anhydride (24h); The

inset shows the UV-vis absorption spectrum of the new compound observed at 11.25 min.

In order to shed some light on the nature of this new fullerene-based compound, we isolated a small
amount of this new derivative by semi-preparative HPLC chromatography, and submited this sample to
MALDI MS analysis. The recorded mass spectra, both in positive and negative mode of detection, do
not exhibit the corresponding molecular ion proposed for the trapping of the thermally generated
azomethyne ylide by the maleic anhydride (Compound 2, molecular weight 1134 Da). In contrast, a peak
at m/z 1104 (M-30 Da) and a fragment at m/z 1060 (1104-44 Da) were observed both in the negative and
positive modes of detection. The structure of the proposed new derivative with a cyclic anhydride
moiety supports the formation of both fragments. Thus, an elimination of 30 Da (formaldehyde) and a
subsequent loss of 44 Da (carbon dioxide) explain the formation of these ions, thus indicating that the
retro-cycloaddition of 1a takes place with trapping of the intermediate dipole (see SI). It is important to
note that the mass spectra of cyclic anhydrides are known to give small or negligible molecular ion
peaks but produce abundant peaks due to CO: elimination.'! The fragmentation pattern of this new
derivative can be therefore considered as a proof of the proposed structure. This conclusion is, indeed,
well supported by our previous research findings: when performing the retro-cycloaddition study with
different 2-pyrazolinofullerenes, we were not able to observe the trapped nitrile-imine species in any
case.” On the contrary, dealing with fulleropyrrolidines, the retro-cycloaddition process is more favored,

and efficient trapping of the thermally generated azomethine ylide has recently been described.!?



Table 1: Experimental conditions used for the retro-cycloaddition reaction undergone by the 2-

pyrazolino-pyrrolidino[60]fullerenes,® and formation of pristine Ceo (%) determined by HPLC.

Experimental Ceo Cn
Entry Compound
Conditions (% Yield) (% Yield)
1 la 0-DCB-24 h. 50 -
2 la MA-24 h. 66 -
3 la CuTf2-24 h. 58 -
4 la MA-CuTf,-24 h. 67 -
5 1b MA-24 h. 11 60
6 1c MA-24 h. - 84

@ All the reactions were performed in 0-DCB at reflux; MA = 30 eg. of maleic anhydride; CuTf, = 1 equiv. of
copper triflate.

Then, we performed the same experiment but adding copper triflate, a metal Lewis acid, in order to find
out if a possible coordination with the nitrogen atoms could activate the retro-cycloaddition reaction.
(Table 1, entry 3). The results of this experiment showed that pristine Ceo was obtained in 58% yield, a
value that resembles that obtained with simple thermal treatment, being therefore, the influence of
copper triflate, scarce or negligible on the retrocycloaddition process. When the experiment was
performed in the presence of maleic anhydride (30 eq.) and copper triflate (1 eq.), (Table 1, entry 4) a
similar result for the retro-cycloaddition of compound 1a, (67%) to that of entry 2 was observed. The
appearance of the new peak at 11.25 min, was also detected, thus confirming the formation of the
trapped azomethyne ylide in the presence of maleic anhydride.

The experiments performed on derivative 1a, suggest that the best condition to trap the dipole and
induce thermal retro-cycloaddition of fulleropyrrolidines is to add a large excess of dipolarophile.

Therefore, we carried out analogous experiments with derivatives 1b and 1c. Derivative 1b is especially



important in order to determine which retro-process is favored, since both fullerene units (Ceo and Co)
are present in this compound. Interestingly when compound 1b was heated at reflux in the presence of
maleic anhydride (30 eq.), C7o was obtained in a larger amount (60 %) than that observed for Ceo (11%),
providing strong evidence that the retro-cycloaddition of fulleropyrrolidines is more favored compared
to the retrocycloaddition of 2-pyrazolinofullerenes. Moreover, we also observed the appearance of the
peak located at 11.25 min. (toluene 1mL/min.), confirming the formation of the trapped azomethine
ylide in the presence of maleic anhydride. The same experiment carried out with derivative 1c showed
that C7o was generated in good yield (84 %) together with other peaks that display UV-vis spectra typical

for a C7o based compound, most likely due to the trapping of the generated azomethine ylide.

Mass spectrometry. The mass spectrum of an organic compound provides two types of
complementary information: one is the knowledge of the molecular weight and formula based on the
molecular ion, and the second one is the determination of the structure on the grounds of the
fragmentation pattern. Since fragmentation is a chemical process resulting in the bond breaking, the
spectrometric fragmentation is sometimes closely related to chemical degradation processes.!'3
Cycloadditions and their corresponding retroprocesses are one of the most classical reactions which can
be investigated either chemically or under the mass spectrometric point of view. The well known retro-
Diels-Alder (RDA) reaction originating a mass spectrometer was first recognized by Biemann'# and is
actually one of the most investigated spectrometric reactions.!> Tonization methods such as electron-
impact-ionization (EI) are hardly used in the fullerene mass spectrometry field.'® In contrast, soft
ionization methods, especially matrix-assisted laser desorption/ionization (MALDI) and electrospray
ionization (ESI) are widely used, even overcoming problems like insolubility and/or degradation of the
sample.!”

In a previous study by some of us, we reported that the thermally induced retro-cycloaddition reaction
in isoxazolino[60]- and [70]-fullerene derivatives can also be observed from the molecular ions
generated by ESI-MS.% On the other hand, N-methyl and N-unsubstituted pyrrolidinofullerenes undergo

the thermal retrocycloaddition affording pristine fullerene.’ In contrast, N-benzoyl pyrrolidinofullerenes
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do not give this reaction.!? The study of the collision-induced dissociation (CID) mass spectra of the
molecular ions generated from these molecules under ESI conditions also supports these findings.!® 2-
Pyrazolino[4,5:1,2][60]fullerenes also undergo a thermal retrocycloaddition,”® and evidence of this
process can be obtained from the CID-ESI mass spectra of these compounds, which form Cego in the
main fragmentation pathway of the corresponding molecular ions.'3

We have investigated the HRMS MALDI mass spectra of compounds 1-3 in order to verify if the
observed thermal retro-cycloadditions also take place when these reactions are induced in the mass
spectrometer. Thus, the homodimer 1a exhibits a molecular ion [M+H]" at m/z 1757.19720 which
eliminates 720 Da (Ceo) to form a fragment at m/z 1037.204 ([60]3a) as the main fragmentation through
a retro-cycloaddition process. However, the existence of an open 1,3 dipole instead of an aziridine ring
cannot be ruled out. A second observed fragment at m/z 874.153 ([60]3b) which corresponds to a
formula C70H2oN clearly indicates a cleavage of the heterocycle bridge with charge retention on the

pyrrolidinofullerene moiety (Scheme 1).

[60]3a
m/z 1037.204
C77H25N,402

[M+H]* = 1757.19720
Ci37H25N40;

[60]3b
m/z 874.153
C7oH20N

Scheme 1: Mass spectrum fragmentation pattern of homodimer la.



Thus, now the question is to know in which heterocycle the retro-cycloaddition takes place. The mass
spectrum of heterodimer 1b shows a molecular ion [M+H]" at m/z 1877.19720 which undergoes a retro-
cycloaddition reaction with loss of 840 Da (Co) leading to the formation of a fragment at m/z 1037.307
([60]3a), identical to the fragment obtained from 1a. This result can only be explained assuming that the
retro-cycloaddition takes place easier on the pyrrolidinofullerene moiety. The cleavage of the heteroring
bridge is also observed in this case provoking the formation of a fragment at m/z 994.160 (|[70]3b) with
a formula CgoH20N which indicates that the charge retention occurs in the pyrrolidinofullerene moiety.
The mass spectrum of 1c¢ confirms these facts. The molecular ion [M+H]" at m/Zz 1997.19720
(C157H25N402) eliminates C7o to form a fragment at m/z 1157.205 ([70]3a) resulting from the retro-
cycloaddition on the pyrrolidinofullerene substructure with elimination of C7. Moreover, the cleavage
of the heteroring bridge yields a fragment at m/z 994.160 ([70]3b) identical to the ion found for the

cleavage of 1b.

Theoretical calculations

Under thermal treatment and in the presence of reagent excess of some dipolarophile such as maleic
anhydride, pyrrolidino[3,4:1,2][60]fullerenes can efficiently revert back to [60]fullerene and azomethine
ylide in what is called the retro-Prato reaction.> Experimentally, pyrrolidinofullerenes revert to the initial
reactants (Ceo + 1,3-dipole) at lower temperature than pyrazolinofullerenes do.*?> To provide some
insight into this different behavior, in this work, we have theoretically explored the reaction mechanism
for the retro-1,3-dipolar cycloaddition that leads to nitrile imine and Ceo. The results obtained have been
compared to the previously studied mechanism for the same retro-Prato reaction involving azomethine
ylide as the 1,3-dipole.*? In this previous work,'> the retro-Prato reaction of N-
methylpyrrolidinofullerene to give Ceo and azomethine ylide was assessed in the presence of maleic
anhydride as a dipolarophile. Figure 3 shows the relative energies and Gibbs free energies of the
transition states (TSs) and products for the most favorable mechanism. Calculations showed that the

presence of maleic anhydride did not improve the efficiency of the reaction by reducing the barrier of the
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retro-cycloaddition reaction. However, the retro-Prato reaction was clearly favored as the final 1,3-
dipole generated was stabilized through reaction with maleic anhydride, converting the overall reaction
from highly endothermic (the reaction energy for the retro-Prato reaction was 53.2 kcal mol?) to
substantially exothermic (in the presence of maleic anhydride, the reaction energy became -16.4 kcal
mol) (see Figure 3). Therefore, the most favorable mechanism was obtained when the assistance of the
dipolarophile was not produced along the whole reaction path, but only at the final stage of the reaction.
The retro-cycloaddition presented a high energy barrier of 45.4 kcal mol™* (AG* = 39.2 kcal mol ) which
was smaller than the reaction energy found (53.1 kcal molt, AG; = 34.0 kcal mol?). However, no
minimum structure was located indicating the existence of a very shallow minimum close to the TS.
Once the retro-cycloaddition was produced (4a + 5 — Ceso + 6a + 5), the formed azomethine ylide
reacted immediately with maleic anhydride generating the final product 7a (Ceo + 6a + 5— Ceo + 73,
see Figure 3). The latter process was barrierless as neither a TS nor an intermediate could be located

during the approach of 6a and 5.

10



[34.0]
Cgp+6a+5

45.4
[39.2]

TS1a+35

~% 4a+35
..Lf— -16.4
"g& [-16.10]
.f-’"f&?l:,. + .‘(\f‘. Ta+ CGD
(OO2 BEP o . o
Lh\ ‘ o~ A ;ﬁ?
~ < 4 | I~ |
e

Figure 3. ONIOM2(B3LYP/6-31G(d):SVWN/STO-3G) reaction energy profile (Gibbs free energies at
298 K in square brackets and red color) for the retro-cycloaddition reaction of the N-
methylpyrrolidino[60]fullerene in the presence of maleic anhydride. All values are taken from ref. 12. H
atoms, and coloured and dark-grey atoms constitute the layer treated at a high level in the ONIOM

approach.

The same mechanism has been explored for the nitrile imine case. Figure 4 contains the relative
energies and the Gibbs free energies of the TSs and products of each step of the reaction. The retro-
cycloaddition reaction (4b + 5 — Ceo + 6b + 5) is also highly endothermic with a reaction energy of
45.4 kcal mol and an activation barrier of 46.7 kcal mol. Gibbs free energies are somewhat smaller,
28.1 and 41.7 kcal mol* as expected from the fact that there is an increase in the entropy along the
reaction coordinate. The reaction energy obtained in the first step of the reaction is more favorable (less

endothermic) for the nitrile imine dipole (45.4 and 53.2 kcal mol* for nitrile imine and azomethine
11



ylide, respectively). This lower reaction energy found is basically attributed to the highest stability of
nitrile imine as compared to the reactive azomethine ylide. The much lower HOMO-LUMO gap for
azomethine ylide (3.62 eV) than for nitrile imine (5.85 eV) provides evidence for the higher stability of
nitrile imine. Although the reaction energy found for the first step of the reaction (4b + 5 — Ceo + 6b +
5) is more favorable for the case of nitrile imine, the activation barrier is 1.5 kcal mol (or 2.5 kcal mol*
in terms of Gibbs free energies) higher than for azomethine ylide. The latter difference computed from
single point energy calculations at the B3LYP/6-31G(d) level using the optimized ONIOM geometries
(i.e. B3LYP/6-31G(d)//ONIOM(B3LYP/6-31G(d):SVWN/STO-3G)) is 0.9 kcal mol. Although the
energy differences found are very low, there is a slight preference for the retro-cycloaddition for the
azomethine ylide case, which is indeed in accordance with experimental findings. Figure 5 shows the
optimized structures for the TSs corresponding to the retro-cycloaddition reaction in the case of
azomethine ylide (TS1a) and nitrile imine (TS1b). In both cases the TSs structures are concerted.
However, TSla is almost synchronous whereas TS1b is clearly asynchronous as expected from
symmetry considerations. The C—C bond distances of those bonds being broken are longer in TSla

(2.71 A) than in TS1b (2.59/2.20 A) as could be anticipated from the Hammond’s postulate.®

12
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Figure 4. ONIOM2(B3LYP/6-31G(d):SVWN/STO-3G) reaction energy profile (Gibbs free energies at
298 K in square brackets and red color) for the retro-cycloaddition reaction of pyrazolino[60]fullerene in
the presence of maleic anhydride. H atoms, and coloured and dark-grey atoms constitute the layer treated

at a high level in the ONIOM approach.

Finally, nitrile imine reacts with maleic anhydride giving the cycloaddition product 7b (Ceo + 6b + 5
— Ceo + 7b). The TS involving the formation of this product has a relative energy of 44.1 kcal mol
which is lower in energy than the previous intermediates (Ceo + 6b + 5) (45.4 kcal mol™). Although a
minimum structure should be found between these two stationary points, we were unable to locate any
intermediate in this extremely flat region of the potential energy surface. The intrinsic reaction
coordinate (IRC) has been performed to ensure that the TS found connects with the expected product

(7b).
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The overall reaction (4b + 5 — Ceo + 7b) is exothermic by -15.6 kcal mol (or by -14.4 kcal mol in
terms of Gibbs free energies). However, the final reaction energy found for azomethine ylide was
slightly more favorable (-16.4 kcal mol). The reaction energies computed with single point energy
calculations at the B3LYP/6-31G(d) level using the optimized ONIOM geometries (i.e. B3LYP/6-
31G(d)//ONIOM(B3LYP/6-31G(d):SVWN/STO-3G)) are -20.6 and -21.3 kcal mol? for the nitrile
imine and azomethine ylide, respectively. B3LYP results do also support that the retro-Prato reaction is

slightly more favored than the nitrile imine retro-cycloaddition reaction.

These results show that the retro-cycloaddition reaction for nitrile imine is slightly less favorable than
for azomethine ylide. The difference in reactivity observed experimentally is basically attributed to the
highest (Gibbs free) energy required to surmount the TS that involves the formation of the dipole (first
step of the reaction). The retro-cycloaddition of azomethine ylide does not only present a lower

activation barrier, but also a slightly more favorable reaction energy for the whole process.

1.261 1.213

Figure 5. Optimized structures (ONIOM2(B3LYP/6-31G(d):SVWN/STO-3G)) for a) TS1a and b) TS1b
with the most relevant distances and angles (in A and in degrees). The low level of the ONIOM
approach is constituted by the transparent atoms. H atoms, and coloured and dark-grey atoms constitute
the layer treated at a high level in the ONIOM approach.
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Summary and conclusions

In summary, we have studied the retro-cycloadition process in a new family of fullerene dimers linked
through 2-pyrazolino-pyrrolidino bridges (1a-c). According to the experimental findings, dimers la-c¢
undergo an efficient retro-Prato (retro-cycloaddition on the pyrrolidine ring) reaction under the
experimental conditions of this study. In contrast, the retro-cycloaddition reaction of 2-
pyrazolinofullerenes is less favored under these conditions. We have observed experimental evidences
that support these conclusions, which are also in good agreement with the theoretical predictions.

These studies on the retro-cycloaddition processes are of interest since the thermal and chemical
stability of fullerene derivatives is a critical issue for their applications in molecular electronics and, in
particular, in the development of photovoltaic devices where fullerene cycloadducts are the materials of
choice as electron acceptors in the construction of bulk heterojunction solar cells.?’ Since light and heat
are key parameters in photovoltaic cells, a better knowledge on their influence in the stability of
modified fullerenes can help in achieving a better understanding of aspects such as morphology, charge

transport and efficiency in these devices.

Experimental Section

General procedure for the retrocycloaddition experiments:

All the reactions were monitored by HPLC (Cosmosil Buckyprep column, 4.6 mm (i.d.) F 250 mm;

toluene, flow rate: 1 mLmint). Retention times: 13.2 min. for C7o, 8.5 min for Ceo.

Experiment 0-DCB-24h.: In a typical experiment, compound 1a (0.005 mol),) was heated at reflux in

0-DCB (5 mL).

Experiment MA-24h.: Compound la-c (0.005 mol) and maleic anhydride (0.016 mmol), were heated

at reflux in 0o-DCB (5 mL).
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Experiment CuTf2-24 h.: Compound 1a (0.005 mol) and copper (Il) triflate (0.005 mmol) were heated

at reflux in 0o-DCB (5 mL).

Experiment MA-CuTf2-24 h.: 1a (0.005 mol), maleic anhydride (0.016 mmol), and copper (ll) triflate

(0.005 mmol) were heated at reflux in 0-DCB (5 mL).

Full geometry optimizations have been carried out with the two-layered ONIOM approach?!?2using
the Gaussian 03 program.?® The density functional theory (DFT) SVWN method?*?° together with the
standard STO-3G basis set?® was used for the low level calculations and the hybrid density functional
B3LYP method?” with the standard 6-31G(d) basis set?® was employed for the high level system. The
latter ONIOM methodology was recently shown to give accurate results close to the full B3LYP (high
level method) calculations for studying cycloaddition reactions in fullerene derivatives.?® All systems
were treated with the spin-restricted formalism. The choice of DFT methods was based on previous
studies which showed that DFT (and in particular B3LYP together with 6-31G (d) basis set) gives
accurate descriptions of the reaction mechanism of pericyclic reactions.®® Hessians were computed to
determine the nature of stationary points (one or zero imaginary frequencies for transition states and
minima, respectively) and to calculate unscaled zero-point energies (ZPEs) as well as thermal
corrections and entropy effects using the standard statistical-mechanics relationships for an ideal gas

from which Gibbs free energies have been calculated at 298 K.3!
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