A. Hershko and A. Ciechanover, THE UBIQUITIN SYSTEM, Annual Review of Biochemistry, vol.67, issue.1, pp.425-479, 1998.
DOI : 10.1146/annurev.biochem.67.1.425

J. Adams and M. Kauffman, Development of the Proteasome Inhibitor Velcade??? (Bortezomib), Cancer Investigation, vol.98, issue.11, pp.304-311, 2004.
DOI : 10.1016/S0093-7754(01)90034-X

R. Kane, R. Dagher, A. Farrell, C. Ko, R. Sridhara et al., Bortezomib for the Treatment of Mantle Cell Lymphoma, Clinical Cancer Research, vol.13, issue.18, pp.5291-5294, 2007.
DOI : 10.1158/1078-0432.CCR-07-0871

J. Shah, E. Stadtmauer, R. Abonour, A. Cohen, W. Bensinger et al., Carfilzomib, pomalidomide, and dexamethasone for relapsed or refractory myeloma, Blood, vol.126, issue.20, pp.2284-2290, 2015.
DOI : 10.1182/blood-2015-05-643320

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643003

E. Huber and M. Groll, Inhibitors for the Immuno- and Constitutive Proteasome: Current and Future Trends in Drug Development, Angewandte Chemie International Edition, vol.51, issue.35, pp.8708-8720, 2012.
DOI : 10.1002/anie.201201616

E. Genin, M. Reboud-ravaux, and J. Vidal, Proteasome Inhibitors: Recent Advances and New Perspectives In Medicinal Chemistry, Current Topics in Medicinal Chemistry, vol.10, issue.3, pp.232-256, 2010.
DOI : 10.2174/156802610790725515

URL : https://hal.archives-ouvertes.fr/hal-00807658

C. Blackburn, K. Gigstad, P. Hales, K. Garcia, M. Jones et al., Characterization of a new series of non-covalent proteasome inhibitors with exquisite potency and selectivity for the 20S ??5-subunit, Biochemical Journal, vol.301, issue.3, pp.461-476, 2010.
DOI : 10.1038/nature07884

C. Blackburn, C. Barrett, J. Blank, F. Bruzzese, N. Bump et al., Optimization of a series of dipeptides with a P3 threonine residue as non-covalent inhibitors of the chymotrypsin-like activity of the human 20S proteasome, Bioorganic & Medicinal Chemistry Letters, vol.20, issue.22, pp.6581-6586, 2010.
DOI : 10.1016/j.bmcl.2010.09.032

M. Groll, N. Gallastegui, X. Marechal, L. Ravalec, V. Basse et al., 20S Proteasome Inhibition: Designing Noncovalent Linear Peptide Mimics of the Natural Product TMC-95A, ChemMedChem, vol.388, issue.10, pp.1701-1705, 2010.
DOI : 10.1002/cmdc.201000293

URL : https://hal.archives-ouvertes.fr/hal-00842680

A. Desvergne, Y. Cheng, S. Grosay-gaudrel, X. Maréchal, M. Reboud-ravaux et al., Noncovalent Fluorescent Probes of Human Immuno- and Constitutive Proteasomes, Journal of Medicinal Chemistry, vol.57, issue.21, pp.9211-9217, 2014.
DOI : 10.1021/jm5011429

URL : https://hal.archives-ouvertes.fr/hal-01408241

A. Desvergne, E. Genin, X. Maréchal, N. Gallastegui, L. Dufau et al., Dimerized Linear Mimics of a Natural Cyclopeptide (TMC-95A) Are Potent Noncovalent Inhibitors of the Eukaryotic 20S Proteasome, Journal of Medicinal Chemistry, vol.56, issue.8, pp.3367-3378, 2013.
DOI : 10.1021/jm4002007

URL : https://hal.archives-ouvertes.fr/hal-00842686

N. Basse, M. Montes, X. Marechal, L. Qin, M. Bouvier-durand et al., Novel Organic Proteasome Inhibitors Identified by Virtual and in Vitro Screening, Journal of Medicinal Chemistry, vol.53, issue.1, pp.509-513, 2010.
DOI : 10.1021/jm9011092

N. Gallastegui, P. Beck, M. Arciniega, R. Huber, S. Hillebrand et al., Hydroxyureas as Noncovalent Proteasome Inhibitors, Angewandte Chemie International Edition, vol.430, issue.1, pp.247-249, 2012.
DOI : 10.1002/anie.201106010

X. Maréchal, E. Genin, L. Qin, O. Sperandio, M. Montes et al., 1,2,4-Oxadiazoles Identified by Virtual Screening and their Non-Covalent Inhibition of the Human 20S Proteasome, Current Medicinal Chemistry, vol.20, issue.18, pp.2351-2362, 2013.
DOI : 10.2174/0929867311320180006

J. Kikuchi, N. Shibayama, S. Yamada, T. Wada, M. Nobuyoshi et al., Homopiperazine Derivatives as a Novel Class of Proteasome Inhibitors with a Unique Mode of Proteasome Binding, PLoS ONE, vol.128, issue.4, p.60649, 2013.
DOI : 10.1371/journal.pone.0060649.t002

Z. Miller, K. Kim, D. Lee, V. Kasam, S. Baek et al., Proteasome Inhibitors with Pyrazole Scaffolds from Structure-Based Virtual Screening, Journal of Medicinal Chemistry, vol.58, issue.4, pp.2036-2041, 2015.
DOI : 10.1021/jm501344n

O. Koroleva, T. Hien, P. Bouvier, D. Dufau, L. Qin et al., Bisbenzimidazole derivatives as potent inhibitors of the trypsin-like sites of the immunoproteasome core particle, Biochimie, vol.108, pp.94-100, 2015.
DOI : 10.1016/j.biochi.2014.11.002

I. Sosi?, M. Gobec, B. Brus, D. Knez, M. ?ivec et al., Nonpeptidic Selective Inhibitors of the Chymotrypsin-Like (??5???i) Subunit of the Immunoproteasome, Angewandte Chemie International Edition, vol.57, issue.19, pp.5745-5748, 2016.
DOI : 10.1002/anie.201600190

W. Lee and K. Kim, The Immunoproteasome: An Emerging Therapeutic Target, Current Topics in Medicinal Chemistry, vol.11, issue.23, pp.2923-2930, 2011.
DOI : 10.2174/156802611798281348

D. Kuhn, S. Hunsucker, Q. Chen, P. Voorhees, M. Orlowski et al., Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors, Blood, vol.113, issue.19, pp.4667-4676, 2009.
DOI : 10.1182/blood-2008-07-171637

D. Niewerth, G. Jansen, Y. Assaraf, S. Zweegman, G. Kaspers et al., Molecular basis of resistance to proteasome inhibitors in hematological malignancies, Drug Resistance Updates, vol.18, pp.18-35, 2015.
DOI : 10.1016/j.drup.2014.12.001

T. Egerer, L. Martinez-gamboa, A. Dankof, B. Stuhlmuller, T. Dorner et al., Tissue-specific up-regulation of the proteasome subunit ??5i (LMP7) in Sj??gren's syndrome, Arthritis & Rheumatism, vol.60, issue.5, pp.1501-1508, 2006.
DOI : 10.1002/art.21782

M. Hernandez, F. Martin-aparicio, E. Gomez-ramos, P. Moran, M. Castano et al., Neuronal induction of the immunoproteasome in Huntington's disease. The Journal of neuroscience, pp.11653-11661, 2003.

M. Mishto, E. Bellavista, A. Santoro, A. Stolzing, C. Ligorio et al., Immunoproteasome and LMP2 polymorphism in aged and Alzheimer's disease brains, Neurobiology of Aging, vol.27, issue.1, pp.54-66, 2006.
DOI : 10.1016/j.neurobiolaging.2004.12.004

URL : https://dspace.lboro.ac.uk/2134/16894

A. Singh, M. Bandi, M. Aujay, C. Kirk, D. Hark et al., PR-924, a selective inhibitor of the immunoproteasome subunit LMP-7, blocks multiple myeloma cell growth both in vitro and in vivo, British Journal of Haematology, vol.369, issue.2, pp.155-163, 2011.
DOI : 10.1111/j.1365-2141.2010.08491.x

E. Huber, M. Basler, R. Schwab, W. Heinemeyer, C. Kirk et al., Immuno- and Constitutive Proteasome Crystal Structures Reveal Differences in Substrate and Inhibitor Specificity, Cell, vol.148, issue.4, pp.727-738, 2012.
DOI : 10.1016/j.cell.2011.12.030

URL : http://doi.org/10.1016/j.cell.2011.12.030

R. Guedes, P. Serra, J. Salvador, and R. Guedes, Computational Approaches for the Discovery of Human Proteasome Inhibitors: An Overview, Molecules, vol.26, issue.7, p.927, 2016.
DOI : 10.1002/cmdc.201402484

Z. Miller, L. Ao, K. Kim, and W. Lee, Inhibitors of the Immunoproteasome: Current Status and Future Directions, Current Pharmaceutical Design, vol.19, issue.22, pp.4140-4151, 2013.
DOI : 10.2174/1381612811319220018

A. Kisselev and M. Groettrup, Subunit specific inhibitors of proteasomes and their potential for immunomodulation, Current Opinion in Chemical Biology, vol.23, pp.16-22, 2014.
DOI : 10.1016/j.cbpa.2014.08.012

T. Muchamuel, M. Basler, M. Aujay, E. Suzuki, K. Kalim et al., A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis, Nature Medicine, vol.37, issue.7, pp.781-787, 2009.
DOI : 10.1038/nm.1978

G. De-bruin, E. Huber, B. Xin, E. Van-rooden, K. Al-ayed et al., Structure-Based Design of ??1i or ??5i Specific Inhibitors of Human Immunoproteasomes, Journal of Medicinal Chemistry, vol.57, issue.14, pp.6197-6209, 2014.
DOI : 10.1021/jm500716s

B. Lei, A. Hameed, M. Hamza, A. Wehenkel, M. Muzyka et al., Molecular Basis of the Selectivity of the Immunoproteasome Catalytic Subunit LMP2-Specific Inhibitor Revealed by Molecular Modeling and Dynamics Simulations, The Journal of Physical Chemistry B, vol.114, issue.38, pp.12333-12339, 2010.
DOI : 10.1021/jp1058098

C. Dubiella, H. Cui, M. Gersch, A. Brouwer, S. Sieber et al., Selective Inhibition of the Immunoproteasome by Ligand-Induced Crosslinking of the Active Site, Angewandte Chemie International Edition, vol.7, issue.44, pp.11969-11973, 2014.
DOI : 10.1002/anie.201406964

C. Dubiella, R. Baur, H. Cui, E. Huber, and M. Groll, Selective Inhibition of the Immunoproteasome by Structure-Based Targeting of a Non-catalytic Cysteine, Angewandte Chemie International Edition, vol.7, issue.52, pp.15888-15891, 2015.
DOI : 10.1002/anie.201506631

H. Fan, N. Angelo, J. Warren, C. Nathan, and G. Lin, Oxathiazolones Selectively Inhibit the Human Immunoproteasome over the Constitutive Proteasome, ACS Medicinal Chemistry Letters, vol.5, issue.4, pp.405-410, 2014.
DOI : 10.1021/ml400531d

URL : http://doi.org/10.1021/ml400531d

M. Groll, V. Korotkov, E. Huber, A. De-meijere, and A. Ludwig, A Minimal ??-Lactone Fragment for Selective ??5c or ??5i Proteasome Inhibitors, Angewandte Chemie International Edition, vol.128, issue.27, pp.7810-7814, 2015.
DOI : 10.1002/anie.201502931

P. Singh, H. Fan, X. Jiang, L. Shi, C. Nathan et al., Immunoproteasome ??5i-Selective Dipeptidomimetic Inhibitors, ChemMedChem, vol.128, issue.19, pp.2127-2131, 2016.
DOI : 10.1002/cmdc.201600384

P. Beck, M. Reboud-ravaux, and M. Groll, Identification of a ??1/??2-Specific Sulfonamide Proteasome Ligand by Crystallographic Screening, Angewandte Chemie International Edition, vol.114, issue.38, pp.11275-11278, 2015.
DOI : 10.1002/anie.201505054

M. Miteva, W. Lee, M. Montes, and B. Villoutreix, Fast Structure-Based Virtual Ligand Screening Combining FRED, DOCK, and Surflex, Journal of Medicinal Chemistry, vol.48, issue.19, pp.6012-6022, 2005.
DOI : 10.1021/jm050262h

S. Pundir, H. Vu, V. Solomon, R. Mcclure, and H. Lee, VR23: A Quinoline-Sulfonyl Hybrid Proteasome Inhibitor That Selectively Kills Cancer via Cyclin E-Mediated Centrosome Amplification, Cancer Research, vol.75, issue.19, pp.4164-4175, 2015.
DOI : 10.1158/0008-5472.CAN-14-3370

J. Schrader, F. Henneberg, R. Mata, K. Tittmann, T. Schneider et al., proteasomes enables next-generation inhibitor design, Science, vol.11, issue.6299, pp.594-598, 2016.
DOI : 10.1021/bi952262x

M. Groll, M. Goetz, M. Kaiser, E. Weyher, and L. Moroder, TMC-95-Based Inhibitor Design Provides Evidence for the Catalytic Versatility of the Proteasome, Chemistry & Biology, vol.13, issue.6, pp.607-614, 2006.
DOI : 10.1016/j.chembiol.2006.04.005

P. Geurink, W. Van-der-linden, A. Mirabella, N. Gallastegui, G. De-bruin et al., Incorporation of Non-natural Amino Acids Improves Cell Permeability and Potency of Specific Inhibitors of Proteasome Trypsin-like Sites, Journal of Medicinal Chemistry, vol.56, issue.3, pp.1262-1275, 2013.
DOI : 10.1021/jm3016987

M. Groll, T. Nazif, R. Huber, and M. Bogyo, Probing Structural Determinants Distal to the Site of Hydrolysis that Control Substrate Specificity of the 20S Proteasome, Chemistry & Biology, vol.9, issue.5, pp.655-662, 2002.
DOI : 10.1016/S1074-5521(02)00144-8

M. Groll, C. Berkers, H. Ploegh, and H. Ovaa, Crystal Structure of the Boronic Acid-Based Proteasome Inhibitor Bortezomib in Complex with the Yeast 20S Proteasome, Structure, vol.14, issue.3, pp.451-456, 2006.
DOI : 10.1016/j.str.2005.11.019

M. Mizushima, T. Morimoto, Y. Tomisugi, Y. Tanaka, K. Yasuoka et al., The structure of the mammalian 20S proteasome at 2.75 A resolution, Structure, vol.10, pp.609-618, 2002.

A. Jain, Surflex:?? Fully Automatic Flexible Molecular Docking Using a Molecular Similarity-Based Search Engine, Journal of Medicinal Chemistry, vol.46, issue.4, pp.499-511, 2003.
DOI : 10.1021/jm020406h

C. Venkatachalam, X. Jiang, T. Oldfield, and M. Waldman, LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites, Journal of Molecular Graphics and Modelling, vol.21, issue.4, pp.289-307, 2003.
DOI : 10.1016/S1093-3263(02)00164-X

M. Miteva, S. Violas, M. Montes, D. Gomez, P. Tuffery et al., FAF-Drugs: free ADME/tox filtering of compound collections, Nucleic Acids Research, vol.34, issue.Web Server, pp.738-744, 2006.
DOI : 10.1093/nar/gkl065

URL : https://hal.archives-ouvertes.fr/inserm-00106930

D. Lagorce, O. Sperandio, J. Baell, M. Miteva, and B. Villoutreix, FAF-Drugs3: a web server for compound property calculation and chemical library design, Nucleic Acids Research, vol.43, issue.W1, pp.200-207, 2015.
DOI : 10.1093/nar/gkv353

URL : http://doi.org/10.1093/nar/gkv353

M. Britton, M. Lucas, S. Downey, M. Screen, A. Pletnev et al., Selective Inhibitor of Proteasome's Caspase-like Sites Sensitizes Cells to Specific Inhibition of Chymotrypsin-like Sites, Chemistry & Biology, vol.16, issue.12, pp.1278-1289, 2009.
DOI : 10.1016/j.chembiol.2009.11.015

A. Khatib, R. Lahlil, N. Scamuffa, M. Akimenko, E. S. Lomri et al., Zebrafish ProVEGF-C Expression, Proteolytic Processing and Inhibitory Effect of Unprocessed ProVEGF-C during Fin Regeneration, PLoS ONE, vol.14, issue.7, p.11438, 2010.
DOI : 10.1371/journal.pone.0011438.t001

F. Sfaxi, N. Scamuffa, C. Lalou, J. Ma, P. Metrakos et al., Repression of liver colorectal metastasis by the serpin Spn4A a naturally occurring inhibitor of the constitutive secretory proprotein convertases, Oncotarget, vol.5, issue.12, pp.4195-4210, 1966.
DOI : 10.18632/oncotarget.1966