]. C. Peureux and V. Jouikov, Covalent Grafting of Silatranes to Carbon Interfaces, Chemistry - A European Journal, vol.11, issue.30, pp.9290-9294, 2014.
DOI : 10.1039/b905072h

URL : https://hal.archives-ouvertes.fr/hal-01153824

G. Cerveau, C. Chuit, E. Colomer, R. J. Corriu, and C. Reye, Ferrocenyl compounds containing two hypervalent silicon species. Electrochemical studies, Organometallics, vol.9, issue.9, pp.2415-2417, 1990.
DOI : 10.1021/om00159a002

). K. Broka, J. Stradins, V. Glezer, G. Zelcans, and E. Lukevics, Electrochemical oxidation of silatranes, Journal of Electroanalytical Chemistry, vol.351, issue.1-2, pp.199-206, 1993.
DOI : 10.1016/0022-0728(93)80234-9

E. F. Belogolova and V. F. Sidorkin, Correlation among the Gas-Phase, Solution, and Solid-Phase Geometrical and NMR Parameters of Dative Bonds in the Pentacoordinate Silicon Compounds. 1-Substituted Silatranes, The Journal of Physical Chemistry A, vol.117, issue.25, pp.5365-5376, 2013.
DOI : 10.1021/jp4035216

M. W. Schmidt, T. L. Windus, and M. S. Gordon, Structural Trends in Silicon Atranes, Journal of the American Chemical Society, vol.117, issue.28, pp.7480-7486, 1995.
DOI : 10.1021/ja00133a020

J. G. Verkade, Main group atranes: chemical and structural features, Coordination Chemistry Reviews, vol.137, pp.233-295, 1994.
DOI : 10.1016/0010-8545(94)03007-D

. Baryshok, Publishing House of the Siberian Branch of Russian Academy of Sciences, Use of Silatranes for Medicine and Agriculture, pp.258-298, 2005.

G. Cerveau, C. Chuit, E. Colomer, R. J. Corriu, and C. Reye, Ferrocenyl compounds containing two hypervalent silicon species. Electrochemical studies, b) V. Corcé, L.-M. Chamoreau, E. Derat, J.-P, pp.2415-2417, 1990.
DOI : 10.1021/om00159a002

K. Yoshida, T. Tamao, A. Kakui, M. Kurita, K. Murata et al., Organofluorosilicates in organic synthesis. 13. Copper(II) oxidation of organopentafluorosilicates, Organometallics, vol.1, issue.2, pp.369-380, 1982.
DOI : 10.1021/om00062a023

J. E. Boggs, P. Chunyang, V. A. Pestunovich, V. F. Sidorkin, G. I. Csonka et al., Structure and bonding in 1-methylsilatrane and 1-fluorosilatrane, Journal of Molecular Structure: THEOCHEM, vol.357, issue.1-2, pp.67-73, 1995.
DOI : 10.1016/0166-1280(95)04270-G

D. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems, p.228, 2001.
DOI : 10.1002/0471220655

M. Rohmer and M. Benard, C bond in [2.2.2]-propellanes more than 40 years ago (for review, see e.g Bond stretch isomerism is normally characterized by a two-minima PES when first minimum corresponds to the structure with the bond and the second to the one without it. Note that bond stretch isomerism was observed not only during the cleavage of the covalent but, For the first time the bond stretch isomerism was described during the the dative bonds Si-P in cage silaphosphanes XSi(YCH 2 CH 2 ) 3 P (ref. 14d) and P-N in phosphatranes X=P(NRCH 2 CH 2 ) 3 N) ( b) T. Kárpáti, T. Veszprémi, N. Thirupathi, X. Liu, pp.340-354, 2001.
DOI : 10.1039/b101270n

H. B. Schlegel, Moeller-Plesset perturbation theory with spin projection, The Journal of Physical Chemistry, vol.92, issue.11, pp.3075-3078, 1988.
DOI : 10.1021/j100322a014

F. Sidorkin, E. F. Belogolova, and E. P. Doronina, Assignment of photoelectron spectra of silatranes: first ionization energies and the nature of the dative Si???N contact, Physical Chemistry Chemical Physics, vol.30, issue.39, pp.26225-26237, 2015.
DOI : 10.1021/om200340k

J. O. Howell, J. M. Goncalves, C. Amatore, L. Klasinc, R. M. Wightman et al., Electron transfer from aromatic hydrocarbons and their .pi.-complexes with metals. Comparison of the standard oxidation potentials and vertical ionization potentials, Journal of the American Chemical Society, vol.106, issue.14, pp.3968-3976, 1984.
DOI : 10.1021/ja00326a014

V. V. Pavlishchuk and A. W. Addison, Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25??C, Inorganica Chimica Acta, vol.298, issue.1, pp.97-102, 2000.
DOI : 10.1016/S0020-1693(99)00407-7

C. K. Mann and K. K. Barnes, Electrochemical Reactions in Nonaqueous Systems, p.560, 1970.

V. Jouikov and M. Postnikova, Effect of concentration on oxidation potentials of alkylarylselenides, Electrochimica Acta, vol.40, issue.7, pp.803-807, 1995.
DOI : 10.1016/0013-4686(95)00022-7

P. Malachesky, Correlation of linear sweep voltammetric and chronoamperometric data for n-value determinations, Analytical Chemistry, vol.41, issue.11, pp.1493-1494, 1969.
DOI : 10.1021/ac60280a043

M. Namazian and M. L. Coote, -Quinone Derivatives in Acetonitrile, The Journal of Physical Chemistry A, vol.111, issue.30, pp.7227-7232, 2007.
DOI : 10.1021/jp0725883

R. S. Mulliken, Electronic Population Analysis on LCAO???MO Molecular Wave Functions. I, The Journal of Chemical Physics, vol.207, issue.10, pp.1833-1840, 1955.
DOI : 10.1063/1.1747438

K. B. Wiberg, Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane, Tetrahedron, vol.24, issue.3, pp.1083-1096, 1968.
DOI : 10.1016/0040-4020(68)88057-3

P. Zuman, Substituent Effects in Organic Polarography, p.384, 1967.
DOI : 10.1007/978-1-4684-8661-2

P. Hencsei, Evaluation of silatrane structures by correlation relationships, Structural Chemistry, vol.1, issue.2, pp.21-26, 1991.
DOI : 10.1007/BF00673485

M. G. Voronkov, A. N. Egorochkin, and O. N. Kuznetsova, Polarizability effect in silatranes and related compounds, Journal of Organometallic Chemistry, vol.691, issue.1-2, pp.159-164, 2006.
DOI : 10.1016/j.jorganchem.2005.07.002

J. H. Iwamiya and G. E. Maciel, Chemical shifts in silatrane and its derivatives: a study of the transannular interaction, Journal of the American Chemical Society, vol.115, issue.15, pp.6835-6842, 1993.
DOI : 10.1021/ja00068a047

L. K. Sviatenko, L. Gorb, F. C. Hill, and J. Leszczynski, -heterocyclic compounds, Journal of Computational Chemistry, vol.98, issue.13, pp.1094-1100, 2013.
DOI : 10.1021/ja00433a036

J. E. Bartmess, Thermodynamics of the Electron and the Proton, The Journal of Physical Chemistry, vol.98, issue.25, pp.6420-6424, 1994.
DOI : 10.1021/j100076a029

G. Scalmani and M. J. Frisch, Continuous surface charge polarizable continuum models of solvation. I. General formalism, The Journal of Chemical Physics, vol.132, issue.11, pp.114110-114124, 2010.
DOI : 10.1021/j100161a070

H. B. Schlegel, Moeller-Plesset perturbation theory with spin projection, The Journal of Physical Chemistry, vol.92, issue.11, pp.3075-3078, 1988.
DOI : 10.1021/j100322a014

F. Neese, ORCA Version 3.0.0, Max-Planck-Insitut für Bioanorganische Chemie, Mülheim and der Ruhr, 2013.

A. E. Reed, L. A. Curtiss, and F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chemical Reviews, vol.88, issue.6, pp.899-926, 1988.
DOI : 10.1021/cr00088a005

R. F. Bader, Atoms in Molecules: a Quantum Theory, p.458, 1990.

E. Espinosa and E. Molins, Retrieving interaction potentials from the topology of the electron density distribution: The case of hydrogen bonds, The Journal of Chemical Physics, vol.2, issue.14, pp.5686-5694, 2000.
DOI : 10.1107/S0365110X60001485

A. A. Korlyukov, Coordination compounds of tetravalent silicon, germanium and tin: the structure, chemical bonding and intermolecular interactions in them, Russian Chemical Reviews, vol.84, issue.4, pp.422-440, 2015.
DOI : 10.1070/RCR4466

K. Tamao, T. Hayashi, Y. Ito, and M. Shiro, Pentacoordinate anionic bis(siliconates) containing a fluorine bridge between two silicon atoms. Synthesis, solid-state structures, and dynamic behavior in solution, Organometallics, vol.11, issue.6, pp.2099-2114, 1992.
DOI : 10.1021/om00042a026