C. Zeng and . R. Jin, Gold Nanoclusters: Size-Controlled Synthesis and Crystal Structures
DOI : 10.1007/430_2014_146

. Struct, R. Bond-jin, C. Zeng, M. Zhou, Y. Chen et al., Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts, Chem. Rev. Chem. Rev. Chem. Soc. Rev, vol.161, issue.37, pp.87-115, 2008.

C. W. Liu, Ag21{S2P(O i Pr)2}12] + : An eight-electron superatom, Angew. Chem. Int. Ed

L. Hayton and T. W. , A Cu25 Nanocluster with partial Cu(0) character, J. Am. Chem. Soc, vol.137, pp.13319-13324, 2015.

A. Das, T. Li, K. Nobusada, C. Zeng, N. L. Rosi et al., Nonsuperatomic [Au23(SC6H11)16] -nanocluster featuring bipyramidal Au15 kernel and trimeric Au3(SR)4 motif, J. Am. Chem. Soc, vol.13516, pp.18264-18267, 2013.
DOI : 10.1021/ja409177s

X. Crystal-structure, theoretical analysis, adaptability of adamantane ligands to form Au23(SAdm)16 and Au25(SAdm)16, and its relation to Au25(SR)18, Am. Chem. Soc, vol.136, pp.14933-14940, 2014.

S. Huang and M. G. Kanatzidis, Synthesis and Structure of the Cluster[NaAu12Se8]3???: An Inorganic Cryptand Complex, Angewandte Chemie International Edition in English, vol.31, issue.6, pp.787-789, 1992.
DOI : 10.1002/anie.199207871

P. Betz, B. Krebs, and G. Henkel, [Cu12S8]4???: A Closed Binary Copper(I) Sulfide Cage with Cuboctahedral Metal and Cubic Sulfur Arrangements, Angewandte Chemie International Edition in English, vol.23, issue.4
DOI : 10.1002/anie.198403111

E. Yang, L. Wang, Z. Powell, D. R. Houser, and R. P. , A [Cu16S10]4??? cluster containing ??3- and ??4-sulfido ligands, Dalton Transactions, vol.46, issue.23, pp.311-312, 1984.
DOI : 10.1039/b905375a

J. Dai, Co-assembled T4-Cu4In16S35 and cubic Cu12S8 clusters: A crystal precursor for near-infrared absorption material, Cryst.Growth Des, vol.15, pp.5749-5753, 2015.

R. B. King, Metal cluster topology 16. Macropolygons and macropolyhedra in coinage metal iron carbonyl cluster anions and related compounds, Inorganica Chimica Acta, vol.227, issue.2, pp.207-209, 1994.
DOI : 10.1016/0020-1693(94)04208-X

K. Albert, K. M. Neymann, G. Pacchioni, and N. Rösch, = 0???5), M4{Fe(CO)4}4] 4- (M = Cu, Ag, Au) and [Ag13{Fe(CO)4}8] n, pp.7370-7376, 1996.
DOI : 10.1021/ic960274g

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior 3098-3100; b) Perdew, J. P. Densityfunctional approximation for the correlation energy of the onhomogeneous electron gas, Phys. Rev. A Phys. Rev. B, vol.38, issue.33, pp.8822-8824, 1986.
DOI : 10.1103/physreva.38.3098

F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Physical Chemistry Chemical Physics, vol.110, issue.16, pp.3297-3305, 2005.
DOI : 10.1039/b508541a

C. M. Morales and F. Weinhold, NBO 5.0; Theoretical Chemistry Institute, 2001.

P. Hay, P. J. Wadt, and W. , effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, The Journal of Chemical Physics, vol.67, issue.1, pp.270-283, 1985.
DOI : 10.1063/1.433731

P. Hay, P. J. Wadt, and W. , Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr, J. Chem. Phys. J. Chem. Phys, vol.82, issue.97, pp.284-298, 1985.

K. Burke and E. K. Gross, A guided tour of time-dependent density functional theory, Density Functionals: Theory and Applications, 1998.
DOI : 10.1007/BFb0106735

T. Yanai, D. Tew, and N. Handy, A new hybrid exchange???correlation functional using the Coulomb-attenuating method (CAM-B3LYP), Chemical Physics Letters, vol.393, issue.1-3, pp.51-57, 2004.
DOI : 10.1016/j.cplett.2004.06.011

S. I. Gorelsky, SWizard program, revision 4

S. I. Gorelsky, AOMix program, http://www.sg-chem.net/ 21, C

E. J. Baerends, J. G. Snijders, A. Ziegler, T. Scm, and . Chemistry, Chemistry with ADF, J. Comput. Chem, vol.22, pp.931-967, 2001.

T. Ziegler and A. Rauk, Theoretical study of the ethylene-metal bond in complexes between Pt 0 , or Pt 2+ and ethylene, based on the Hartree-Fock-Slater transition-state method, Inorg. Chem, vol.18, pp.22-1558, 1979.

E. Van-lenthe and E. J. Baerends, Optimized Slater-type basis sets for the elements 1-118, Journal of Computational Chemistry, vol.265, issue.9, pp.1142-1156, 2003.
DOI : 10.1002/jcc.10255

C. W. Liu, P. Liao, C. Feng, J. Saillard, S. Kahlal et al., An eleven-vertex deltahedron with hexacapped trigonal bipyramidal geometry, Chemical Communications, vol.31, issue.20
DOI : 10.1039/c1cc10168d

URL : https://hal.archives-ouvertes.fr/hal-00859804

B. K. Teo, H. Zhang, Y. Kean, H. Dang, and X. Shi, Binary icosahedral clusters: Atom and electron counting rules, The Journal of Chemical Physics, vol.1984, issue.4, pp.2929-2941, 1993.
DOI : 10.1021/ic00295a028

D. M. Mingos, Structural and bonding patterns in gold clusters, Dalton Trans., vol.162, issue.15, pp.6680-6695
DOI : 10.1039/C5DT00253B

K. M. Thomas, R. Mason, and D. M. Mingos, Stereochemistry of octadecacarbonylhexaosmium(0) Novel hexanuclear complex based on a bicapped tetrahedron of metal atoms, J. Am. Chem. Soc, vol.95, pp.3802-3804, 1973.

M. P. Forsyth and M. I. , Molecular-orbital calculations on transition-metal cluster compounds containing six metal atoms, Dalton Trans, pp.610-616, 1977.

J. Liao, C. Latouche, B. Li, S. Kahlal, J. Saillard et al., A Twelve-Coordinated Iodide in a Cuboctahedral Silver(I) Skeleton, Inorganic Chemistry, vol.53, issue.4, pp.2260-2267, 2014.
DOI : 10.1021/ic402960e

URL : https://hal.archives-ouvertes.fr/hal-00945260

R. Hoffmann, P. Von-ragué-schleyer, I. Schaefer, and H. , Predicting Molecules-More Realism, Please!, Angewandte Chemie International Edition, vol.106, issue.38, pp.7164-7167, 2008.
DOI : 10.1002/anie.200801206