3. , J. Ch3, and C. =. , 1 Hz, CH 3 iPr' of p-cymene), 1.63 (s, 3H

. Hz, 19 (s, 3H, OMe), 3.34 (s, 3H, OMe), 3.35 (s, 3 H, OMe), 3.40 (s, 3H, OMe), 3.41 (s, 3H, OMe), 3.45 (s, 3H, OMe), 3.46 (s, 3H, OMe), 3.47 (s, 3H, OMe), 3.48 (s, 3H, OMe), 3.51 (s, 3H, OMe), 3.52 (s, 3H, OMe), 3.53 (s, 3H, OMe), 3.54 (s, 3H, OMe), 3.56 (s, 3H, OMe), 3.58 (s, 3H, OMe), pp.62698206-62698209

. Hz, 05 (d, 1H, 3 J H-1,H-2 = 3.5 Hz, H-1), 5, pp.6-11

. Mhz, 4 (s) ppm; elemental analysis (%) calcd for C 77 H 125 Cl 2 O 33 PRu·CH 2 Cl 2 (1781.75 + 84.93): C, 50.19; H, 6.86; found: C, 50.05; H, 6.80; MS (ESI-TOF): m/z (%): 1803, p.210

. Mhz, CH 3 iPr of p-cymene), 1.05 (d, 3H, 3 J CH3,CH = 7.1 Hz, CH 3 iPr' of p-cymene), 1.73 (s, 3H, 94 (d, 3H, 3 J CH3,CH = 7.1 Hz, pp.50-51

. Hz, 36 (s, 3H, OMe), 3.38 (s, 3H, OMe), 3.39 (s, 3H, OMe), 3.40 (s, 3H, OMe), 3.41 (s, 3H, OMe), 3.45 (s, 3H, OMe), 3.46 (s, 3H, OMe), 3.48 (s, 6H, OMe), 3.49 (s, 3H, OMe), 3.53 (s, 3H, OMe), 3.56 (s, 3H, OMe), 3.57 (s, 3H, OMe), 3.58 (s, 3H, OMe), 3.92 (dd, 1H, 2 J H-6a,H-6b = 10.3 Hz, pp.12-15

. Hz, 9 Hz, o-H' of p-cymene), 4.95 (d, 1H, 3 J m-H,o-H = 5.9 Hz, pp.4-74

. Hz, 06 (d, 1H, 3 J H-1,H-2 = 3.1 Hz, pp.10-11

. Hz, C-4), 83.45, 83.65 (C ortho of p-cymene) (s) ppm; elemental analysis (%), C ipso ), vol.82898443541861, issue.128, pp.95-6294

M. Rh and =. , 07 mmol) in CH 2 Cl 2 (5 mL) was added dropwise to a solution of04 mmol) in CH 2 Cl 2 (5 mL) under vigorous stirring at room temperature. The reaction mixture was stirred for 1 h before being evaporated to dryness in vacuo to afford quantitatively a mixture of 10a and 10b (10a/10b, 85:15, 0.114 g, 99%) as a brown solid. R f (SiO 2 ) = dec; mp > 250 °C; Selected spectroscopic data: 13 C{ 1 H} NMR (125.8 MHz, CDCl 3 , 25 °C) ? 181 (s, CO) cm ?1 ; elemental analysis (%) calcd for C, ) [M + CO + Na] + . 11: A solution of [Rh(CO) 2 Cl CH 2 Cl 2 (5 mL) under vigorous stirring at room temperature. After 1 h, the volume of the reaction mixture was reduced to 5 mL and pentane (40 mL) was added in order to precipitate unreacted [Rh(CO) 2, pp.1803-6212, 1985.

J. Cl, P. =. , and P. =. , H-6b = 2 J H-6a,P = 3 J H-6a,H-5 = 1517 (t, 1H, 2 J H-6a,H-6b = 2 J H-6a,P = 14.2 Hz20 (s, 3H, OMe), 3.30 (s, 3H, OMe), 3.32 (s, 3H, OMe), 3.36 (s, 3H, OMe), 3.45 (s, 6H, OMe), 3.46 (s, 3H, OMe), 3.48 (s, 3H, OMe), 3.50 (s, 6H, OMe), 3.52 (s, 3H, OMe), 3.53 (s, 3H, OMe), 3.59 (s, 6H, OMe), 3.62 (s, 3H, OMe), 3.64 (s, 3H, OMe), 3.65 (s, 3H, OMe), 3.68 (s, 3H, OMe), 3.76 (s, 3H, OMe), 3, The resulting solution was evaporated to dryness in vacuo to afford quantitatively 11 as a brown powder (0.103 g, 83%). mp dec >250 °C; 1 H NMR (500.1 MHz, CDCl 3 , 25 °C) ? (assignment by combined COSY and HSQC) = 1.91 (q, 1H), 5.00 (d, 1H, 3 J H-1,H-2 = 4.6 Hz, H-1), 5.03 (d, 1H, 3 J H-1,H-2 = 3.7 Hz °C) ? (assignment by HSQC) = 32.32 (d, 1 J C,P = 29.3 Hz, C-6 A ), pp.13-16

J. C. Hz and P. =. , (C-1), 127.62, 176.16 [×2] (d, 1 J C,Rh = 77.2 Hz, CO), p.63

C. Hz and . Na, CDCl 3 , 25 °C) ? 40.5 (d, 1 J P,Rh = 172 Hz) ppm 2004 (s, CO) cm ?1 ; We do not provide microanalytical data for this compound because of strong hydration, pp.2086-2026

A. F. Littke and G. C. Fu, :?? Expanded Scope and Milder Reaction Conditions for the Coupling of Aryl Chlorides, The Journal of Organic Chemistry, vol.64, issue.1, pp.10-11, 1999.
DOI : 10.1021/jo9820059

A. F. Littke and G. C. Fu, A Versatile Catalyst for Heck Reactions of Aryl Chlorides and Aryl Bromides under Mild Conditions, Journal of the American Chemical Society, vol.123, issue.29, pp.6989-7000, 2001.
DOI : 10.1021/ja010988c

N. Kataoka, Q. Shelby, J. P. Stambuli, J. F. Hartwig, T. E. Barder et al., Air Stable, Sterically Hindered Ferrocenyl Dialkylphosphines for Palladium-Catalyzed C???C, C???N, and C???O Bond-Forming Cross-Couplings, The Journal of Organic Chemistry, vol.67, issue.16, pp.5553-5566, 2002.
DOI : 10.1021/jo025732j

Y. Ohzu, K. Goto, and T. Kawashima, A Bowl-Shaped Triarylphosphane with a Large Cone Angle: Synthesis and Crystallographic Analysis of a[(PdX2)3(PR3)2]-Type Complex, Angewandte Chemie International Edition, vol.42, issue.46, pp.5714-5717, 2003.
DOI : 10.1002/anie.200352616

D. L. Dodds, M. D. Boele, G. P. Van-strijdonck, J. G. De-vries, P. W. Van-leeuwen et al., Design, Testing and Kinetic Analysis of Bulky Monodentate Phosphorus Ligands in the Mizoroki-Heck Reaction, European Journal of Inorganic Chemistry, vol.58, issue.10, pp.1660-1671, 201101271.
DOI : 10.1002/ejic.201101271

T. Fujihara, S. Yoshida, H. Ohta, and Y. Tsuji, Triarylphosphanes with Dendritically Arranged Tetraethylene Glycol Moieties at the Periphery: An Efficient Ligand for the Palladium-Catalyzed Suzuki-Miyaura Coupling Reaction, Angewandte Chemie International Edition, vol.350, issue.43, pp.8310-8314, 2008.
DOI : 10.1002/anie.200802683

D. S. Surry and S. L. Buchwald, Biaryl Phosphane Ligands in Palladium-Catalyzed Amination, Angewandte Chemie International Edition, vol.129, issue.34, pp.6338-6361, 2008.
DOI : 10.1002/anie.200800497

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3517088

L. Monnereau, D. Sémeril, D. Matt, and L. Toupet, Cavity-Shaped Ligands: Calix[4]arene-Based Monophosphanes for Fast Suzuki-Miyaura Cross-Coupling, Chemistry - A European Journal, vol.31, issue.30, pp.9237-9247, 2010.
DOI : 10.1002/chem.200903390

R. L. Pruett and J. A. Smith, Low-pressure system for producing normal aldehydes by hydroformylation of .alpha.-olefins, The Journal of Organic Chemistry, vol.34, issue.2, pp.327-330, 1969.
DOI : 10.1021/jo01254a015

A. A. Dabbawala, R. V. Jasra, and H. C. Bajaj, Regioselective and rapid hydroformylation of vinyl acetate catalyzed by rhodium complex modified bulky phosphite ligand, Catalysis Communications, vol.11, issue.7, pp.616-619, 2010.
DOI : 10.1016/j.catcom.2010.01.007

H. Tricas, O. Diebolt, and P. W. Van-leeuwen, Bulky monophosphite ligands for ethene hydroformylation, Journal of Catalysis, vol.298, pp.198-205, 2013.
DOI : 10.1016/j.jcat.2012.11.031

P. W. Van-leeuwen and C. Claver, Rhodium Catalyzed Hydroformylation, 2002.

D. Selent, K. Wiese, D. Röttger, and A. Börner, Novel Oxyfunctionalized Phosphonite Ligands for the Hydroformylation of Isomericn-Olefins, Angewandte Chemie International Edition, vol.39, issue.9, pp.1639-1641, 2000.
DOI : 10.1002/(SICI)1521-3773(20000502)39:9<1639::AID-ANIE1639>3.0.CO;2-C

B. Breit, R. Winde, T. Mackewitz, R. Paciello, and K. Harms, Phosphabenzenes as Monodentate ??-Acceptor Ligands for Rhodium-Catalyzed Hydroformylation, Chemistry - A European Journal, vol.8, issue.192, pp.3106-3121, 2001.
DOI : 10.1002/1521-3765(20010716)7:14<3106::AID-CHEM3106>3.0.CO;2-Y

M. L. Clarke, Branched Selective Hydroformylation: A Useful Tool for Organic Synthesis, Current Organic Chemistry, vol.9, issue.7, pp.701-718, 2005.
DOI : 10.2174/1385272053764980

A. A. Dabbawala, R. V. Jasra, and H. C. Bajaj, Selective hydroformylation of 1-hexene to branched aldehydes using rhodium complex of modified bulky phosphine and phosphite ligands, Catalysis Communications, vol.12, issue.6, pp.403-407, 2011.
DOI : 10.1016/j.catcom.2010.10.026

R. Bellini and J. N. Reek, Coordination Studies on Supramolecular Chiral Ligands and Application in Asymmetric Hydroformylation, Chemistry - A European Journal, vol.50, issue.23, pp.7091-7099, 2012.
DOI : 10.1002/chem.201200225

F. Agbossou, J. Carpentier, and A. Mortreux, Asymmetric Hydroformylation, Chemical Reviews, vol.95, issue.7, pp.2485-2506, 1995.
DOI : 10.1021/cr00039a008

J. Klosin and C. R. Landis, Ligands for Practical Rhodium-Catalyzed Asymmetric Hydroformylation, Accounts of Chemical Research, vol.40, issue.12, pp.1251-1259, 2007.
DOI : 10.1021/ar7001039

A. Gual, C. Godard, S. Castillón, and C. Claver, Highlights of the Rh-catalysed asymmetric hydroformylation of alkenes using phosphorus donor ligands, Tetrahedron: Asymmetry, vol.21, issue.9-10, pp.1135-1146, 2010.
DOI : 10.1016/j.tetasy.2010.05.037

R. Franke, D. Selent, and A. Börner, Applied Hydroformylation, Chemical Reviews, vol.112, issue.11, pp.5675-5732, 2012.
DOI : 10.1021/cr3001803

R. Gramage-doria, Large Cavity Cyclodextrin-Based Macrocyclic Ligands: Synthesis, Coordination and Catalytic Properties
URL : https://hal.archives-ouvertes.fr/tel-00767168

R. Gramage-doria, D. Armspach, and D. Matt, Metallated cavitands (calixarenes, resorcinarenes, cyclodextrins) with internal coordination sites, Coordination Chemistry Reviews, vol.257, issue.3-4, pp.776-816, 2013.
DOI : 10.1016/j.ccr.2012.10.006

URL : https://hal.archives-ouvertes.fr/hal-01472922

W. Kaufmann, L. M. Venanzi, and A. Albinati, Platinum(II) phosphine complexes containing 1,3,5-triazine and related ligands, Inorganic Chemistry, vol.27, issue.7, pp.1178-1187, 1988.
DOI : 10.1021/ic00280a018

E. Engeldinger, D. Armspach, D. Matt, and P. G. Jones, Cyclodextrin Phosphanes as First and Second Coordination Sphere Cavitands, Chemistry - A European Journal, vol.9, issue.13, pp.3091-3105, 2003.
DOI : 10.1002/chem.200304806

L. Wu, M. Desmond, M. J. Drago, and R. S. , Spectroscopic and calorimetric titration studies of the reactions of chloro-bridged rhodium(I) dimers with trimethyl phosphite, Inorganic Chemistry, vol.18, issue.3, pp.679-686, 1979.
DOI : 10.1021/ic50193a030

P. Uguagliati, G. Deganello, L. Busetto, and U. Belluco, Novel complexes of rhodium and iridium with electronegative olefins, Inorganic Chemistry, vol.8, issue.8, pp.1625-1630, 1969.
DOI : 10.1021/ic50078a011

C. D. Wood and P. Garrou, Formate formation during Co2(CO)8/PR3-catalyzed hydroformylation, Organometallics, vol.3, issue.1, pp.170-174, 1984.
DOI : 10.1021/om00079a030

J. S. Leigh and K. H. Whitmire, }, Acta Crystallographica Section C Crystal Structure Communications, vol.45, issue.2, pp.210-212, 1989.
DOI : 10.1107/S0108270188010960

G. L. Miessler and D. A. Tarr, Inorganic Chemistry, pp.534-538, 2011.

C. B. Ziegler, . Jr, and R. F. Heck, Palladium-catalyzed vinylic substitution with highly activated aryl halides, The Journal of Organic Chemistry, vol.43, issue.15, pp.2941-2946, 1978.
DOI : 10.1021/jo00409a001

R. F. Heck and J. P. Nolley, Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides, The Journal of Organic Chemistry, vol.37, issue.14, pp.2320-2322, 1972.
DOI : 10.1021/jo00979a024

A. Gillie and J. K. Stille, Mechanisms of 1,1-reductive elimination from palladium, Journal of the American Chemical Society, vol.102, issue.15, pp.4933-4941, 1980.
DOI : 10.1021/ja00535a018

D. Sémeril, M. Lejeune, C. Jeunesse, and D. Matt, Heck, Suzuki and Kumada???Corriu cross-coupling reactions mediated by complexes based on the upper rim of diphosphinated calix[4]arenes, Journal of Molecular Catalysis A: Chemical, vol.239, issue.1-2, pp.257-262, 2005.
DOI : 10.1016/j.molcata.2005.06.024

K. H. Shaughnessy, P. Kim, and J. F. Hartwig, A Fluorescence-Based Assay for High-Throughput Screening of Coupling Reactions. Application to Heck Chemistry, Journal of the American Chemical Society, vol.121, issue.10, pp.2123-2132, 1999.
DOI : 10.1021/ja983419m

G. T. Crisp, Variations on a theme???recent developments on the mechanism of the Heck reaction and their implications for synthesis, Chemical Society Reviews, vol.24, issue.6, pp.427-436, 1998.
DOI : 10.1039/a827427z

I. P. Beletskaya and A. V. Cheprakov, The Heck Reaction as a Sharpening Stone of Palladium Catalysis, Chemical Reviews, vol.100, issue.8, pp.3009-3066, 2000.
DOI : 10.1021/cr9903048

N. J. Whitcombe, K. K. Hii, and S. E. Gibson, Advances in the Heck chemistry of aryl bromides and chlorides, Tetrahedron, vol.57, issue.35, pp.7449-7476, 2001.
DOI : 10.1016/S0040-4020(01)00665-2

P. Surawatanawong, Y. Fan, and M. B. Hall, Density functional study of the complete pathway for the Heck reaction with palladium diphosphines, Journal of Organometallic Chemistry, vol.693, issue.8-9, pp.1552-1563, 2008.
DOI : 10.1016/j.jorganchem.2008.01.034

C. Amatore and A. Jutand, Anionic Pd(0) and Pd(II) Intermediates in Palladium-Catalyzed Heck and Cross-Coupling Reactions, Accounts of Chemical Research, vol.33, issue.5, pp.314-321, 2000.
DOI : 10.1021/ar980063a

J. P. Knowles and A. Whiting, The Heck???Mizoroki cross-coupling reaction: a mechanistic perspective, Org. Biomol. Chem., vol.45, issue.186, pp.31-44, 2007.
DOI : 10.1039/B611547K

A. Jutand, Mechanisms of the Mizoroki???Heck Reaction, 2009.
DOI : 10.1002/9780470716076.ch1

URL : https://hal.archives-ouvertes.fr/hal-00438098

E. Engeldinger, D. Armspach, and D. Matt, Cyclodextrin Cavities as Probes for Ligand-Exchange Processes, Angewandte Chemie International Edition, vol.59, issue.109, pp.2526-2529, 2001.
DOI : 10.1002/1521-3773(20010702)40:13<2526::AID-ANIE2526>3.0.CO;2-T

Y. T. Wong, C. Yang, K. Ying, and G. Jia, Synthesis of a Novel ??-Cyclodextrin-Functionalized Diphosphine Ligand and Its Catalytic Properties for Asymmetric Hydrogenation, Organometallics, vol.21, issue.9, pp.1782-1787, 2002.
DOI : 10.1021/om010995+

A. Schlatter, M. K. Kundu, and W. Woggon, Enantioselective Reduction of Aromatic and Aliphatic Ketones Catalyzed by Ruthenium Complexes Attached to ?-Cyclodextrin, Angewandte Chemie International Edition, vol.43, issue.2, pp.6731-6734, 2004.
DOI : 10.1002/anie.200460102

F. Hartley, The Chemistry of Platinum and Palladium, 1973.