R. Mannon, Macrophages, Current Opinion in Organ Transplantation, vol.17, issue.1, pp.20-25, 2012.
DOI : 10.1097/MOT.0b013e32834ee5b6

S. Salehi and E. Reed, The divergent roles of macrophages in solid organ transplantation, Current Opinion in Organ Transplantation, vol.20, issue.4, pp.446-53, 2015.
DOI : 10.1097/MOT.0000000000000209

L. Davies and P. Taylor, Tissue-resident macrophages: then and now, Immunology, vol.3, issue.4, pp.541-548, 2015.
DOI : 10.1111/imm.12451

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368161

S. Epelman, K. Lavine, and G. Randolph, Origin and Functions of Tissue Macrophages, Immunity, vol.41, issue.1, pp.21-35, 2014.
DOI : 10.1016/j.immuni.2014.06.013

P. Murray and T. Wynn, Protective and pathogenic functions of macrophage subsets, Nature Reviews Immunology, vol.332, issue.11, pp.723-760, 2011.
DOI : 10.1038/nri3073

A. Sica and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas, Journal of Clinical Investigation, vol.122, issue.3, pp.787-795, 2012.
DOI : 10.1172/JCI59643DS1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287223

F. Geissmann, M. Manz, S. Jung, M. Sieweke, M. Merad et al., Development of Monocytes, Macrophages, and Dendritic Cells, Development of Monocytes, Macrophages, and Dendritic Cells, pp.656-661, 2010.
DOI : 10.1146/annurev.immunol.20.081501.125851

URL : https://hal.archives-ouvertes.fr/hal-00502972

F. Tacke, D. Alvarez, T. Kaplan, C. Jakubzick, R. Spanbroek et al., Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques, Journal of Clinical Investigation, vol.117, issue.1, pp.185-194, 2007.
DOI : 10.1172/JCI28549

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1716202

H. Pilmore, D. Painter, and G. Bishop, EARLY UP-REGULATION OF MACROPHAGES AND MYOFIBROBLASTS, Transplantation, vol.69, issue.12, pp.2658-62, 2000.
DOI : 10.1097/00007890-200006270-00028

A. Skaro, R. Liwski, P. Johnson, J. Legare, T. Lee et al., Donor versus Recipient: Neointimal Cell Origin in Allograft Vascular Disease, Graft, vol.5, issue.7, pp.390-398, 2002.
DOI : 10.1177/152216202237626

A. Kumar, P. Metharom, J. Schmeckpeper, S. Weiss, K. Martin et al., Bone marrow-derived CX3CR1 progenitors contribute to neointimal smooth muscle cells via fractalkine CX3CR1 interaction, The FASEB Journal, vol.24, issue.1, pp.81-92, 2010.
DOI : 10.1096/fj.09-132225

A. Kumar, K. Martin, E. Turner, C. Buneker, K. Dorgham et al., Role of CX3CR1 Receptor in Monocyte/Macrophage Driven Neovascularization, PLoS ONE, vol.5, issue.2, p.57230, 2013.
DOI : 10.1371/journal.pone.0057230.s008

C. Haskell, W. Hancock, D. Salant, W. Gao, V. Csizmadia et al., Targeted deletion of CX3CR1 reveals a role for fractalkine in cardiac allograft rejection, Journal of Clinical Investigation, vol.108, issue.5, pp.679-688, 2001.
DOI : 10.1172/JCI12976

S. Dichmann, Y. Herouy, D. Purlis, H. Rheinen, P. Gebicke-härter et al., Fractalkine induces chemotaxis and actin polymerization in human dendritic cells, Inflammation Research, vol.50, issue.11, pp.529-533, 2001.
DOI : 10.1007/PL00000230

J. Gevrey, B. Isaac, and D. Cox, Syk Is Required for Monocyte/Macrophage Chemotaxis to CX3CL1 (Fractalkine), The Journal of Immunology, vol.175, issue.6, pp.3737-3745, 2005.
DOI : 10.4049/jimmunol.175.6.3737

A. Gilman, G Proteins: Transducers of Receptor-Generated Signals, Annual Review of Biochemistry, vol.56, issue.1, pp.615-664, 1987.
DOI : 10.1146/annurev.bi.56.070187.003151

J. Cherfils and M. Zeghouf, Regulation of Small GTPases by GEFs, GAPs, and GDIs, Physiological Reviews, vol.93, issue.1, pp.269-309, 2013.
DOI : 10.1152/physrev.00003.2012

J. Bos, H. Rehmann, and A. Wittinghofer, GEFs and GAPs: Critical Elements in the Control of Small G Proteins, Cell, vol.129, issue.5, pp.865-877, 2007.
DOI : 10.1016/j.cell.2007.05.018

W. Allen, G. Jones, J. Pollard, A. Ridley, and . Rho, Rac and Cdc42 regulate actin organization and cell adhesion in macrophages, J Cell Sci, vol.110, pp.707-720, 1997.

M. Kloc, X. Li, and R. Ghobrial, RhoA Cytoskeletal Pathway to Transplantation, J Immunol Clin Transpl, vol.2, pp.1012-1017, 2014.

A. Ridley, W. Allen, M. Peppelenbosch, and G. Jones, Rho family proteins and cell migration, Biochem Soc Symp, vol.65, pp.111-123, 1999.

M. Vicente-manzanares, D. Webb, and A. Horwitz, Cell migration at a glance, Journal of Cell Science, vol.118, issue.21, pp.4917-4919, 2005.
DOI : 10.1242/jcs.02662

Y. Liu, N. Tejpal, J. You, X. Li, R. Ghobrial et al., ROCK inhibition impedes macrophage polarity and functions, Cellular Immunology, vol.300, pp.54-62, 2016.
DOI : 10.1016/j.cellimm.2015.12.005

Y. Liu, L. Minze, L. Mumma, X. Li, R. Ghobrial et al., Mouse macrophage polarity and ROCK1 activity depend on RhoA and non-apoptotic Caspase 3, Experimental Cell Research, vol.341, issue.2, pp.225-236, 2016.
DOI : 10.1016/j.yexcr.2016.02.004

B. Clausen, C. Burkhardt, W. Reith, I. Renkawitz, and . Förster, Conditional gene targeting in macrophages and granulocytes using LysMcre mice, Transgenic Research, vol.8, issue.4, pp.265-277, 1999.
DOI : 10.1023/A:1008942828960

N. Tsai and L. Wei, RhoA/ROCK1 signaling regulates stress granule formation and apoptosis, Cellular Signalling, vol.22, issue.4, pp.668-75, 2010.
DOI : 10.1016/j.cellsig.2009.12.001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815184

X. Yang, F. Zheng, S. Zhang, and J. Lu, Loss of RhoA expression prevents proliferation and metastasis of SPCA1 lung cancer cells in vitro, Biomedicine & Pharmacotherapy, vol.69, pp.361-367, 2015.
DOI : 10.1016/j.biopha.2014.12.004

S. Leung, R. Rojas, C. Maples, C. Flynn, W. Ruiz et al., Modulation of Endocytic Traffic in Polarized Madin-Darby Canine Kidney Cells by the Small GTPase RhoA, Molecular Biology of the Cell, vol.10, issue.12, pp.4369-4384, 1999.
DOI : 10.1091/mbc.10.12.4369

C. Garnacho, V. Shuvaev, A. Thomas, L. Mckenna, J. Sun et al., RhoA activation and actin reorganization involved in endothelial CAM-mediated endocytosis of anti-PECAM carriers: critical role for tyrosine 686 in the cytoplasmic tail of PECAM-1, Blood, vol.111, issue.6, pp.3024-3057, 2008.
DOI : 10.1182/blood-2007-06-098657

S. Apostolakis, E. Krambovitis, Z. Vlata, G. Kochiadakis, S. Baritaki et al., CX3CR1 receptor is up-regulated in monocytes of coronary artery diseased patients: Impact of pre-inflammatory stimuli and renin???angiotensin system modulators, Thrombosis Research, vol.121, issue.3, pp.387-395, 2007.
DOI : 10.1016/j.thromres.2007.04.005

S. Apostolakis and D. Spandidos, Chemokines and atherosclerosis: focus on the CX3CL1/CX3CR1 pathway, Acta Pharmacologica Sinica, vol.139, issue.10, pp.1251-1256, 2013.
DOI : 10.1093/eurheartj/ehn382

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4002164

H. Liu, D. Jiang, /. Fractalkine, and . Cx3cr1, Fractalkine/CX3CR1 and atherosclerosis, Clinica Chimica Acta, vol.412, issue.13-14, pp.1180-1186, 2011.
DOI : 10.1016/j.cca.2011.03.036

S. Stamatovic, O. Dimitrijevic, R. Keep, and A. Andjelkovic, Protein Kinase C??-RhoA Cross-talk in CCL2-induced Alterations in Brain Endothelial Permeability, Journal of Biological Chemistry, vol.281, issue.13, pp.8379-8388, 2006.
DOI : 10.1074/jbc.M513122200

J. Barlic, Y. Zhang, J. Foley, and P. Murphy, Oxidized Lipid-Driven Chemokine Receptor Switch, CCR2 to CX3CR1, Mediates Adhesion of Human Macrophages to Coronary Artery Smooth Muscle Cells Through a Peroxisome Proliferator-Activated Receptor ??-Dependent Pathway, Circulation, vol.114, issue.8, pp.807-819, 2006.
DOI : 10.1161/CIRCULATIONAHA.105.602359