K. Kaukonen, M. Bailey, S. Suzuki, D. Pilcher, and R. Bellomo, Mortality Related to Severe Sepsis and Septic Shock Among Critically Ill Patients in Australia and New Zealand, 2000-2012, JAMA, vol.311, issue.13, p.1308, 2000.
DOI : 10.1001/jama.2014.2637

C. Luyt, A. Combes, C. Deback, M. Aubriot-lorton, A. Nieszkowska et al., Herpes Simplex Virus Lung Infection in Patients Undergoing Prolonged Mechanical Ventilation, American Journal of Respiratory and Critical Care Medicine, vol.175, issue.9, pp.935-942, 2007.
DOI : 10.1164/rccm.200609-1322OC

S. Yende, D. Angelo, G. Kellum, J. Weissfeld, L. Fine et al., Inflammatory Markers at Hospital Discharge Predict Subsequent Mortality after Pneumonia and Sepsis, American Journal of Respiratory and Critical Care Medicine, vol.177, issue.11, pp.1242-1247, 2008.
DOI : 10.1164/rccm.200712-1777OC

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720087

S. Ou, H. Chu, P. Chao, Y. Lee, S. Kuo et al., Long-Term Mortality and Major Adverse Cardiovascular Events in Sepsis Survivors. A Nationwide Population-based Study, American Journal of Respiratory and Critical Care Medicine, vol.194, issue.2, pp.201510-2023, 2016.
DOI : 10.1164/rccm.201510-2023OC

R. Hotchkiss, G. Monneret, and D. Payen, Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy, Nature Reviews Immunology, vol.12, issue.12, pp.862-874, 2013.
DOI : 10.1038/nri3552

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077177

O. Rigato and R. Salomao, Impaired Production of Interferon-?? and Tumor Necrosis Factor-?? but not of Interleukin 10 in Whole Blood of Patients with Sepsis, Shock, vol.19, issue.2, pp.113-116, 2003.
DOI : 10.1097/00024382-200302000-00004

L. Tulzo, Y. Pangault, C. Amiot, L. Guilloux, V. Tribut et al., Monocyte Human Leukocyte Antigen???DR Transcriptional Downregulation by Cortisol during Septic Shock, American Journal of Respiratory and Critical Care Medicine, vol.169, issue.10, pp.1144-1151, 2004.
DOI : 10.1164/rccm.200309-1329OC

F. Stephan, K. Yang, J. Tankovic, C. Soussy, G. Dhonneur et al., Impairment of polymorphonuclear neutrophil functions precedes nosocomial infections in critically ill patients, Critical Care Medicine, vol.30, issue.2, pp.315-322, 2002.
DOI : 10.1097/00003246-200202000-00009

L. Tulzo, Y. Pangault, C. Gacouin, A. Guilloux, V. Tribut et al., Early Circulating Lymphocyte Apoptosis in Human Septic Shock Is Associated with Poor Outcome, Shock, vol.18, issue.6, pp.487-494, 2002.
DOI : 10.1097/00024382-200212000-00001

F. Venet, C. Chung, H. Kherouf, A. Geeraert, C. Malcus et al., Increased circulating regulatory T cells (CD4+CD25+CD127???) contribute to lymphocyte anergy in septic shock patients, Intensive Care Medicine, vol.71, issue.4, pp.678-686, 2009.
DOI : 10.1007/s00134-008-1337-8

P. Tattevin, D. Monnier, O. Tribut, J. Dulong, N. Bescher et al., Enhanced Indoleamine 2,3???Dioxygenase Activity in Patients with Severe Sepsis and Septic Shock, The Journal of Infectious Diseases, vol.201, issue.6, pp.956-966, 2010.
DOI : 10.1086/650996

URL : https://hal.archives-ouvertes.fr/hal-00744207

D. Gabrilovich and S. Nagaraj, Myeloid-derived suppressor cells as regulators of the immune system, Nature Reviews Immunology, vol.172, issue.3, pp.162-174, 2009.
DOI : 10.1038/nri2506

S. Solito, I. Marigo, L. Pinton, V. Damuzzo, S. Mandruzzato et al., Myeloidderived suppressor cell heterogeneity in human cancers

B. Huang, Gr-1+CD115+ Immature Myeloid Suppressor Cells Mediate the Development of Tumor-Induced T Regulatory Cells and T-Cell Anergy in Tumor-Bearing Host, Cancer Research, vol.66, issue.2, pp.1123-1131, 2006.
DOI : 10.1158/0008-5472.CAN-05-1299

D. Mougiakakos, R. Jitschin, L. Bahr-von, I. Poschke, R. Gary et al., Immunosuppressive CD14+HLA-DRlow/neg IDO+ myeloid cells in patients following allogeneic hematopoietic stem cell transplantation, Leukemia, vol.165, issue.2, pp.377-388, 2013.
DOI : 10.1189/jlb.1107768

P. Rodríguez, D. Quiceno, J. Zabaleta, B. Ortiz, A. Zea et al., Arginase I Production in the Tumor Microenvironment by Mature Myeloid Cells Inhibits T-Cell Receptor Expression and Antigen-Specific T-Cell Responses, Cancer Research, vol.64, issue.16, pp.5839-5849, 2004.
DOI : 10.1158/0008-5472.CAN-04-0465

J. Schmielau and O. Finn, Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients, Cancer Research, vol.61, pp.4756-4760, 2001.

V. Damuzzo, L. Pinton, G. Desantis, S. Solito, I. Marigo et al., Complexity and challenges in defining myeloid-derived suppressor cells, Cytometry Part B: Clinical Cytometry, vol.27, issue.2, pp.77-91, 2014.
DOI : 10.1002/cyto.b.21206

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405078

H. Janols, C. Bergenfelz, R. Allaoui, A. Larsson, L. Rydén et al., A high frequency of MDSCs in sepsis patients, with the granulocytic subtype dominating in gram-positive cases, Journal of Leukocyte Biology, vol.96, issue.5, pp.685-693, 2014.
DOI : 10.1189/jlb.5HI0214-074R

C. Darcy, G. Minigo, K. Piera, J. Davis, Y. Mcneil et al., Neutrophils with myeloid derived suppressor function deplete arginine and constrain T cell function in septic shock patients, Critical Care, vol.18, issue.4, p.163, 2014.
DOI : 10.1186/cc14003

E. Guérin, M. Orabona, M. Raquil, B. Giraudeau, R. Bellier et al., Circulating Immature Granulocytes With T-Cell Killing Functions Predict Sepsis Deterioration*, Critical Care Medicine, vol.42, issue.9, pp.2007-2018, 2014.
DOI : 10.1097/CCM.0000000000000344

A. Gey, J. Tadie, A. Caumont-prim, C. Hauw-berlemont, L. Cynober et al., Granulocytic myeloid-derived suppressor cells inversely correlate with plasma arginine and overall survival in critically ill patients, Clinical & Experimental Immunology, vol.9, issue.Suppl. 4, pp.280-288, 2015.
DOI : 10.1111/cei.12567

M. Levy, M. Fink, J. Marshall, E. Abraham, D. Angus et al., 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference, ATS/SIS International Sepsis Definitions Conference, pp.1250-1256, 2001.
DOI : 10.1097/01.CCM.0000050454.01978.3B

L. Gall, J. Lemeshow, S. Saulnier, and F. , A New Simplified Acute Physiology Score (SAPS II) Based on a European/North American Multicenter Study, JAMA: The Journal of the American Medical Association, vol.270, issue.24, pp.2957-2963, 1993.
DOI : 10.1001/jama.1993.03510240069035

L. Gall, J. Klar, J. Lemeshow, S. Saulnier, F. Alberti et al., The Logistic Organ Dysfunction system. A new way to assess organ dysfunction in the intensive care unit. ICU Scoring Group, JAMA: The Journal of the American Medical Association, vol.276, issue.10, pp.802-810, 1996.
DOI : 10.1001/jama.276.10.802

J. Vincent, R. Moreno, J. Takala, S. Willatts, D. Mendonça et al., The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine, Intensive Care Med, pp.707-710, 1996.
DOI : 10.1007/bf01709751

C. Camus, S. Salomon, C. Bouchigny, A. Gacouin, S. Lavoué et al., Short-Term Decline in All-Cause Acquired Infections With the Routine Use of a Decontamination Regimen Combining Topical Polymyxin, Tobramycin, and Amphotericin B With Mupirocin and Chlorhexidine in the ICU, Critical Care Medicine, vol.42, issue.5, pp.1121-1130, 2014.
DOI : 10.1097/CCM.0000000000000140

URL : https://hal.archives-ouvertes.fr/hal-01130734

M. Roussel, C. Benard, B. Ly-sunnaram, and T. Fest, Refining the white blood cell differential: The first flow cytometry routine application, Cytometry Part A, vol.20, issue.6, pp.552-563, 2010.
DOI : 10.1002/cyto.a.20893

L. Ziegler-heitbrock, P. Ancuta, S. Crowe, M. Dalod, V. Grau et al., Nomenclature of monocytes and dendritic cells in blood, Blood, vol.116, issue.16, pp.74-80, 2010.
DOI : 10.1182/blood-2010-02-258558

URL : https://hal.archives-ouvertes.fr/hal-00611173

C. Loï, J. Zazzo, E. Delpierre, C. Niddam, N. Neveux et al., Increasing plasma glutamine in postoperative patients fed an arginine-rich immune-enhancing diet???A pharmacokinetic randomized controlled study*, Critical Care Medicine, vol.37, issue.2, pp.501-509, 2009.
DOI : 10.1097/CCM.0b013e3181958cba

M. Eisen, P. Spellman, P. Brown, and D. Botstein, Cluster analysis and display of genome-wide expression patterns, Proceedings of the National Academy of Sciences, vol.95, issue.25, pp.14863-14868, 1998.
DOI : 10.1073/pnas.95.25.14863

H. Poehlmann, J. Schefold, H. Zuckermann-becker, H. Volk, and C. Meisel, Phenotype changes and impaired function of dendritic cell subsets in patients with sepsis: a prospective observational analysis, Critical Care, vol.13, issue.4, p.119, 2009.
DOI : 10.1186/cc7969

S. Brandau, K. Moses, and S. Lang, The kinship of neutrophils and granulocytic myeloid-derived suppressor cells in cancer: Cousins, siblings or twins?, Seminars in Cancer Biology, vol.23, issue.3, pp.171-182, 2013.
DOI : 10.1016/j.semcancer.2013.02.007

P. Sinha, C. Okoro, D. Foell, H. Freeze, S. Ostrand-rosenberg et al., Proinflammatory S100 Proteins Regulate the Accumulation of Myeloid-Derived Suppressor Cells, The Journal of Immunology, vol.181, issue.7, pp.4666-4675, 2008.
DOI : 10.4049/jimmunol.181.7.4666

J. Waight, Q. Hu, A. Miller, S. Liu, and S. Abrams, Tumor-Derived G-CSF Facilitates Neoplastic Growth through a Granulocytic Myeloid-Derived Suppressor Cell-Dependent Mechanism, PLoS ONE, vol.6, issue.11, pp.27690-27705, 2011.
DOI : 10.1371/journal.pone.0027690.s005

M. Munder, Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity, Blood, vol.105, issue.6, pp.2549-2556, 2005.
DOI : 10.1182/blood-2004-07-2521

M. Faurschou and N. Borregaard, Neutrophil granules and secretory vesicles in inflammation, Microbes and Infection, vol.5, issue.14, pp.1317-1327, 2003.
DOI : 10.1016/j.micinf.2003.09.008

J. Boomer, K. To, K. Chang, O. Takasu, D. Osborne et al., Immunosuppression in Patients Who Die of Sepsis and Multiple Organ Failure, JAMA, vol.306, issue.23, pp.2594-2605, 2011.
DOI : 10.1001/jama.2011.1829

A. Drewry, N. Samra, L. Skrupky, B. Fuller, S. Compton et al., Persistent Lymphopenia After Diagnosis of Sepsis Predicts Mortality, Shock, vol.42, issue.5, pp.383-391, 2014.
DOI : 10.1097/SHK.0000000000000234

G. Monneret, M. Finck, F. Venet, A. Debard, J. Bohé et al., The anti-inflammatory response dominates after septic shock: association of low monocyte HLA-DR expression and high interleukin-10 concentration, Immunology Letters, vol.95, issue.2, pp.193-198, 2004.
DOI : 10.1016/j.imlet.2004.07.009

J. Cavaillon and M. Adib-conquy, Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis, Critical Care, vol.10, issue.5, p.233, 2006.
DOI : 10.1186/cc5055

G. Monneret, A. Lepape, N. Voirin, J. Bohé, F. Venet et al., Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock, Intensive Care Medicine, vol.51, issue.8, pp.1175-1183, 2006.
DOI : 10.1007/s00134-006-0204-8

URL : https://hal.archives-ouvertes.fr/hal-00428008

K. Zhang, X. Bai, R. Li, Z. Xiao, J. Chen et al., Endogenous glucocorticoids promote the expansion of myeloid-derived suppressor cells in a murine model of trauma, Int J Mol Med, vol.30, pp.277-282, 2012.

M. Kovach and T. Standiford, The function of neutrophils in sepsis, Current Opinion in Infectious Diseases, vol.25, issue.3, pp.321-327, 2012.
DOI : 10.1097/QCO.0b013e3283528c9b

B. Mathias, A. Delmas, T. Ozrazgat-baslanti, E. Vanzant, B. Szpila et al., Human Myeloid-derived Suppressor Cells are Associated With Chronic Immune Suppression After Severe Sepsis/Septic Shock, Annals of Surgery, vol.265, issue.4, pp.10-1097, 2016.
DOI : 10.1097/SLA.0000000000001783

A. Cuenca, M. Delano, K. Kelly-scumpia, C. Moreno, P. Scumpia et al., A paradoxical role for myeloidderived suppressor cells in sepsis and trauma, Mol Med, vol.17, pp.281-292, 2011.

L. Brudecki, D. Ferguson, C. Mccall, G. El, and M. , Myeloid-Derived Suppressor Cells Evolve during Sepsis and Can Enhance or Attenuate the Systemic Inflammatory Response, Infection and Immunity, vol.80, issue.6, pp.2026-2034, 2012.
DOI : 10.1128/IAI.00239-12

P. Rodriguez, M. Ernstoff, C. Hernandez, M. Atkins, J. Zabaleta et al., Arginase I-Producing Myeloid-Derived Suppressor Cells in Renal Cell Carcinoma Are a Subpopulation of Activated Granulocytes, Cancer Research, vol.69, issue.4
DOI : 10.1158/0008-5472.CAN-08-1921

T. Cloke, M. Munder, G. Taylor, I. Müller, and P. Kropf, Characterization of a Novel Population of Low-Density Granulocytes Associated with Disease Severity in HIV-1 Infection, PLoS ONE, vol.41, issue.11, p.48939, 2012.
DOI : 10.1371/journal.pone.0048939.t003

J. Sagiv, J. Michaeli, S. Assi, I. Mishalian, H. Kisos et al., Phenotypic Diversity and Plasticity in Circulating Neutrophil Subpopulations in Cancer, Cell Reports, vol.10, issue.4, pp.562-573, 2015.
DOI : 10.1016/j.celrep.2014.12.039

P. Popovic, H. Zeh, and J. Ochoa, Arginine and immunity, The Journal of nutrition, 2007.

R. Taneja, J. Parodo, S. Jia, A. Kapus, O. Rotstein et al., Delayed neutrophil apoptosis in sepsis is associated with maintenance of mitochondrial transmembrane potential and reduced caspase-9 activity*, Critical Care Medicine, vol.32, issue.7, pp.1460-1469, 2004.
DOI : 10.1097/01.CCM.0000129975.26905.77

G. Drifte, I. Dunn-siegrist, P. Tissières, and J. Pugin, Innate Immune Functions of Immature Neutrophils in Patients With Sepsis and Severe Systemic Inflammatory Response Syndrome*, Critical Care Medicine, vol.41, issue.3, pp.820-832, 2013.
DOI : 10.1097/CCM.0b013e318274647d

L. Van-vught, K. Klouwenberg, P. Spitoni, C. Scicluna, B. Wiewel et al., Incidence, Risk Factors, and Attributable Mortality of Secondary Infections in the Intensive Care Unit After Admission for Sepsis, JAMA, vol.315, issue.14, pp.1469-1479, 2016.
DOI : 10.1001/jama.2016.2691

J. Xu, J. Escamilla, S. Mok, J. David, S. Priceman et al., CSF1R Signaling Blockade Stanches Tumor-Infiltrating Myeloid Cells and Improves the Efficacy of Radiotherapy in Prostate Cancer, Cancer Research, vol.73, issue.9, pp.2782-2794, 2013.
DOI : 10.1158/0008-5472.CAN-12-3981

H. Qin, B. Lerman, I. Sakamaki, G. Wei, S. Cha et al., Generation of a new therapeutic peptide that depletes myeloid-derived suppressor cells in tumor-bearing mice, Nature Medicine, vol.20, issue.6, 2014.
DOI : 10.1111/j.1365-2567.2012.03566.x

D. Lai, C. Qin, and Q. Shu, Myeloid-Derived Suppressor Cells in Sepsis, BioMed Research International, vol.192, issue.7, p.598654, 2014.
DOI : 10.1007/s00134-012-2575-3

E. Abeles, R. Mcphail, M. Sowter, D. Antoniades, C. Vergis et al., CD14, CD16 and HLA-DR reliably identifies human monocytes and their subsets in the context of pathologically reduced HLA-DR expression by CD14hi/CD16neg monocytes: Expansion of CD14hi/CD16pos and contraction of CD14lo/CD16pos monocytes in acute liver fail, Cytometry Part A, vol.51, issue.10, pp.823-834, 2012.
DOI : 10.1002/cyto.a.22104

E. Van-lochem, E. Van-der-velden, V. Wind, H. Marvelde-te, J. Westerdaal et al., Immunophenotypic differentiation patterns of normal hematopoiesis in human bone marrow: Reference patterns for age-related changes and disease-induced shifts, Cytometry, vol.15, issue.1, pp.1-13, 2004.
DOI : 10.1002/cyto.b.20008