W. B. Sanders, Lichens: The Interface between Mycology and Plant Morphology, BioScience, vol.51, issue.12, pp.1025-1035, 2001.
DOI : 10.1641/0006-3568(2001)051[1025:LTIBMA]2.0.CO;2

L. G. Sancho, T. A. Green, and A. Pintado, Slowest to fastest: Extreme range in lichen growth rates supports their use as an indicator of climate change in Antarctica Secondary lichen compounds as protection against excess solar radiation and herbivores, Flora Morphol. Distrib. Funct. Ecol. Plants In Progress in Botany, vol.202, issue.73, pp.667-673, 2007.

K. Molnár and E. Farkas, Current results on biological activities of lichen secondary metabolites: A review N. Lichen chemistry and selective grazing by the coleopteran Lasioderma serricorne, Z. Naturforsch. C Environ. Exp. Bot, vol.65, issue.55, pp.157-173, 2006.

R. Benesperi and M. Tretiach, Differential land snail damage to selected species of the lichen genus Peltigera, Biochemical Systematics and Ecology, vol.32, issue.2, pp.127-138, 2001.
DOI : 10.1016/S0305-1978(03)00141-8

D. M. Glen, H. Jones, and J. K. Fieldsend, Damage to oilseed rape seedlings by the field slug Deroceras reticulatum in relation to glucosinolate concentration, Annals of Applied Biology, vol.1, issue.1, pp.197-207, 1990.
DOI : 10.1007/BF00334172

L. Chevalier, C. Desbuquois, J. Papineau, and M. Charrier, INFLUENCE OF THE QUINOLIZIDINE ALKALOID CONTENT OF LUPINUS ALBUS (FABACEAE) ON THE FEEDING CHOICE OF HELIX ASPERSA (GASTROPODA: PULMONATA), Journal Molluscan Studies, vol.66, issue.1, pp.61-68, 2000.
DOI : 10.1093/mollus/66.1.61

D. R. Livingstone, M. A. Kirchin, and A. Wiseman, Cytochrome P-450 and oxidative metabolism in molluscs, Xenobiotica, vol.35, issue.10, pp.1041-1062, 1989.
DOI : 10.1016/0025-326X(85)90003-7

R. Aguiar and M. Wink, How do slugs cope with toxic alkaloids? Chemoecology, pp.167-177, 2005.
DOI : 10.1007/s00049-005-0309-5

S. Hesbacher, B. Baur, A. Baur, and P. Proksch, Sequestration of lichen compounds by three species of terrestrial snails, Journal of Chemical Ecology, vol.104, issue.2, pp.233-246, 1995.
DOI : 10.1007/BF02036654

L. Chevallier, J. Nougier, and J. M. Cantagrel, Volcanology of Possession island, Crozet archipelago (TAAF), Proceedings of the 4th International Symposium on Antarctic Earth Sciences, pp.16-20, 1982.

L. Floch, M. Frenot, and Y. , Soil Calcium Availability Influences Shell Ecophenotype Formation in the Subantarctic Land Snail, Notodiscus hookeri, PLoS ONE, vol.8, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00957590

P. Convey, How are the life history strategies of Antarctic terrestrial invertebrates influenced by extreme environmental conditions?, Journal of Thermal Biology, vol.22, issue.6, pp.429-440, 1997.
DOI : 10.1016/S0306-4565(97)00062-4

Y. Frenot, S. L. Chown, J. Whinam, P. M. Selkirk, P. Convey et al., Biological invasions in the Antarctic: extent, impacts and implications, Biological Reviews, vol.62, issue.207, pp.45-72, 2005.
DOI : 10.1016/S0169-5347(01)02194-2

A. Solem, The subantarctic land snail, Notodiscus hookeri (Reeve, 1854)

A. R. Palmer, Calcification in marine molluscs: how costly is it?, Proc. Natl. Acad. Sci. USA 1992, pp.1379-1382
DOI : 10.1073/pnas.89.4.1379

I. Yoshimura, Y. Kinoshita, Y. Yamamoto, S. Huneck, and Y. Yamada, Analysis of secondary metabolites from Lichen by high performance liquid chromatography with a photodiode array detector, Phytochemical Analysis, vol.6, issue.4, pp.197-205, 1994.
DOI : 10.1002/pca.2800050405

J. Boustie and M. Grube, Lichens???a promising source of bioactive secondary metabolites, Plant Genetic Resources: Characterization and Utilization, vol.55, issue.02, pp.273-287, 2005.
DOI : 10.1111/j.1432-1033.2004.03981.x

B. S. Paliya, R. Bajpai, V. Jadaun, J. Kumar, S. Kumar et al., The genus Usnea: A potent phytomedicine with multifarious ethnobotany, phytochemistry and pharmacology, pp.21672-21696, 2016.

D. Cansaran, D. Kahya, E. Yurdakulol, and O. Atakol, Abstract, Zeitschrift f??r Naturforschung C, vol.61, issue.11-12, pp.773-776, 2006.
DOI : 10.1515/znc-2006-11-1202

K. Ingolfsdottir, Usnic acid, Phytochemistry, vol.61, issue.7, pp.729-736, 2002.
DOI : 10.1016/S0031-9422(02)00383-7

R. Emmerich, I. Giez, O. L. Lange, and P. Proksch, Toxicity and antifeedant activity of lichen compounds against the polyphagous herbivorous insect Spodoptera littoralis, Phytochemistry, vol.33, issue.6, pp.1389-1394, 1993.
DOI : 10.1016/0031-9422(93)85097-B

H. Cetin, O. Tufan-cetin, A. O. Turk, T. Tay, M. Candan et al., Insecticidal activity of major lichen compounds, (???)- and (+)-usnic acid, against the larvae of house mosquito, Culex pipiens L., Parasitology Research, vol.8, issue.653, pp.1277-1279, 2008.
DOI : 10.1007/s00436-008-0905-8

M. Goga, H. Pöykkö, W. Adlassnig, and M. Ba?kor, Response of the lichen-eating moth Cleorodes lichenaria larvae to varying amounts of usnic acid in the lichens, Arthropod-Plant Interactions, vol.104, issue.2, pp.71-77, 2016.
DOI : 10.1007/s11829-015-9409-5

W. E. Cook, M. F. Raisbeck, T. E. Cornish, E. S. Williams, B. Brown et al., Paresis and Death in Elk (Cervus elaphus) Due to Lichen Intoxication in Wyoming, Journal of Wildlife Diseases, vol.43, issue.3, pp.498-503, 2007.
DOI : 10.7589/0090-3558-43.3.498

P. V. Storeheier, S. D. Mathiesen, N. J. Tyler, and M. A. Olsen, Nutritive value of terricolous lichens for reindeer in winter, The Lichenologist, vol.34, issue.3, pp.247-257, 2002.
DOI : 10.1006/lich.2002.0394

M. A. Sundset, A. Kohn, S. D. Mathiesen, and K. E. Praesteng, Eubacterium rangiferina, a novel usnic acid-resistant bacterium from the reindeer rumen, Naturwissenschaften, vol.51, issue.8, pp.741-749, 2008.
DOI : 10.1007/s00114-008-0381-0

M. Charrier, G. Fonty, B. Gaillard-martinie, K. Ainouche, and G. Andant, Isolation and characterization of cultivable fermentative bacteria from the intestine of two edible snails, Helix pomatia and Cornu aspersum (Gastropoda: Pulmonata), Biol. Res, vol.39, pp.669-681, 2006.

M. Charrier and C. Rouland, : localisations et variations en fonction de l'??tat nutritionnel, Canadian Journal of Zoology, vol.70, issue.11, pp.2234-2241, 1992.
DOI : 10.1139/z92-300

M. Charrier and A. Brune, The gut microenvironment of helicid snails (Gastropoda: Pulmonata): in-situ profiles of pH, oxygen, and hydrogen determined by microsensors, Canadian Journal of Zoology, vol.81, issue.5, pp.928-935, 2003.
DOI : 10.1139/z03-071

M. A. Radwan, A. E. Essawy, N. E. Abdelmeguied, S. S. Hamed, and A. Ahmed, Biochemical and histochemical studies on the digestive gland of Eobania vermiculata snails treated with carbamate pesticides, Pesticide Biochemistry and Physiology, vol.90, issue.3, pp.154-167, 2008.
DOI : 10.1016/j.pestbp.2007.11.011

M. Hauck, S. Jürgens, S. Huneck, and C. Leuschner, High acidity tolerance in lichens with fumarprotocetraric, perlatolic or thamnolic acids is correlated with low pKa1 values of these lichen substances, Environmental Pollution, vol.157, issue.10, pp.2776-2780, 2009.
DOI : 10.1016/j.envpol.2009.04.022

L. Pogam, P. Legouin, B. Geairon, A. Rogniaux, H. Lohézic-le-dévéhat et al., Le Lamer, A.-C. Spatial mapping of lichen specialized metabolites using LDI-MSI: Chemical ecology issues for Ophioparma ventosa

W. S. Maass and A. C. Neish, LICHEN SUBSTANCES II: BIOSYNTHESIS OF CALYCIN AND PULVINIC DILACTONE BY THE LICHEN, PSEUDOCYPHELLARIA CROCATA, Canadian Journal of Botany, vol.45, issue.1, pp.59-72, 1967.
DOI : 10.1139/b67-004

D. J. Galloway, P. W. James, and A. L. Wilkins, Further Nomenclature and Chemical Notes on Pseudocyphellaria in New Zealand, The Lichenologist, vol.15, issue.02, pp.135-145, 1983.
DOI : 10.1017/S0024282983000213

L. Nybakken, J. Asplund, K. A. Solhaug, and Y. Gauslaa, Forest Successional Stage Affects the Cortical Secondary Chemistry of Three Old Forest Lichens, Journal of Chemical Ecology, vol.158, issue.8, pp.1607-1618, 2007.
DOI : 10.1007/s10886-007-9339-5

E. Stocker-wörgötter, ChemInform Abstract: Metabolic Diversity of Lichen-Forming Ascomycetous Fungi: Culturing, Polyketide and Shikimate Metabolite Production, and PKS Genes, ChemInform, vol.25, issue.21, pp.188-200, 2008.
DOI : 10.1002/chin.200821269

L. Nybakken, A. Helmersen, and Y. Gauslaa, Lichen Compounds Restrain Lichen Feeding by Bank Voles (Myodes glareolus), Journal of Chemical Ecology, vol.37, issue.3, pp.298-304, 2010.
DOI : 10.1007/s10886-010-9761-y

Y. Gauslaa, Lichen palatability depends on investments in herbivore defence, Oecologia, vol.104, issue.1, pp.94-105, 2005.
DOI : 10.1007/s00442-004-1768-z

J. Asplund and Y. Gauslaa, Mollusc grazing limits growth and early development of the old forest lichen Lobaria pulmonaria in broadleaved deciduous forests, Oecologia, vol.87, issue.1, pp.93-99, 2008.
DOI : 10.1007/s00442-007-0891-z

M. Hyvärinen, R. Koopmann, O. Hormi, and J. Tuomi, Phenols in reproductive and somatic structures of lichens: a case of optimal defence?, Oikos, vol.91, issue.2, pp.371-375, 2000.
DOI : 10.1034/j.1600-0706.2000.910217.x

P. W. Rundel, The ecological role of secondary lichen substances, Biochemical Systematics and Ecology, vol.6, issue.3, pp.157-170, 1978.
DOI : 10.1016/0305-1978(78)90002-9

I. Giez, O. L. Lange, and P. Proksch, Growth retarding activity of lichen substances against the polyphagous herbivorous insect Spodoptera littoralis, Biochemical Systematics and Ecology, vol.22, issue.2, pp.113-120, 1994.
DOI : 10.1016/0305-1978(94)90001-9

B. Moncada, R. Lücking, and L. Betancourt-macuase, Phylogeny of the Lobariaceae (lichenized Ascomycota: Peltigerales), with a reappraisal of the genus Lobariella, The Lichenologist, vol.185, issue.2, pp.203-263, 2013.
DOI : 10.1639/0007-2745-113.3.590

B. Moncada, B. Reidy, and R. Lücking, sensu lato (lichenized Ascomycota: Lobariaceae) reveals eight new species and a high degree of inferred endemism, The Bryologist, vol.117, issue.2, pp.119-160, 2014.
DOI : 10.1639/0007-2745-117.2.119

K. Palmqvist, L. Dahlman, F. Valladares, A. Tehler, L. G. Sancho et al., CO 2 exchange and thallus nitrogen across 75 contrasting lichen associations from different climate zones, Oecologia, vol.133, issue.3, pp.295-306, 2002.
DOI : 10.1007/s00442-002-1019-0

S. Kurokawa and K. Takahashi, Gyrophoric acid as a chemical constituent in the cortex of lichen thallus, J. Jpn. Bot, vol.45, pp.230-231, 1970.

M. Kauppi and K. Verseghy-patay, Determination of the distribution of lichen substances in the thallus by fluorescence microscopy, Ann. Bot. Fenn, vol.27, pp.189-202, 1990.

B. Mccune, Letharia gracilis (Parmeliaceae), a new species from California and Oregon, The Bryologist, vol.112, issue.2, pp.375-378, 2009.
DOI : 10.1639/0007-2745-112.2.375

C. F. Culberson, Improved conditions and new data for identification of lichen products by standardized thin-layer chromatographic method, Journal of Chromatography A, vol.72, issue.1, pp.113-125, 1972.
DOI : 10.1016/0021-9673(72)80013-X

I. G. Zenkevich, A. Y. Eshchenko, S. V. Makarova, A. G. Vitenberg, Y. G. Dobryakov et al., Identification of the Products of Oxidation of Quercetin by Air Oxygenat Ambient Temperature, Molecules, vol.12, issue.3, pp.654-672, 2007.
DOI : 10.3390/12030654

U. G. Indahl, K. H. Liland, and T. Naes, Canonical partial least squares-a unified PLS approach to classification and regression problems, Journal of Chemometrics, vol.96, issue.1, pp.495-504, 2009.
DOI : 10.1002/cem.1243

R. A. Van-den-berg, H. C. Hoefsloot, J. A. Westerhuis, A. K. Smilde, and M. J. Van-der-werf, Centering, scaling, and transformations: Improving the biological information content of metabolomics data, BMC Genomics, vol.7, issue.1, pp.142-157, 2006.
DOI : 10.1186/1471-2164-7-142

M. Hervé, RVAideMemoire: Diverse Basic Statistical and Graphical Functions Available online: https://cran.r-project.org/doc/contrib/Herve-Aide-memoire-statistique.pdf (accessed on 16, 2016.

R. Team, R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing, 2016.