J. W. Nam, O. S. Rissland, D. Koppstein, C. Abreu-goodger, C. Jan et al., Global Analyses of the Effect of Different Cellular Contexts on MicroRNA Targeting, Molecular Cell, vol.53, issue.6, pp.1031-1043, 2014.
DOI : 10.1016/j.molcel.2014.02.013

A. Wilczynska and M. Bushell, The complexity of miRNA-mediated repression, Cell Death and Differentiation, vol.700, issue.1, pp.22-33, 2015.
DOI : 10.1126/science.1149460

M. Selbach, B. Schwanhäusser, N. Thierfelder, Z. Fang, R. Khanin et al., Widespread changes in protein synthesis induced by microRNAs, Nature, vol.4, issue.7209, pp.58-63, 2008.
DOI : 10.1074/mcp.M500241-MCP200

URL : http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:bvb:12-bsb00085066-2

S. W. Eichhorn, H. Guo, S. E. Mcgeary, R. A. Rodriguez-mias, C. Shin et al., mRNA Destabilization Is the Dominant Effect of Mammalian MicroRNAs by the Time Substantial Repression Ensues, Molecular Cell, vol.56, issue.1, pp.104-115, 2014.
DOI : 10.1016/j.molcel.2014.08.028

D. Baek, J. Villén, C. Shin, F. D. Camargo, S. P. Gygi et al., The impact of microRNAs on protein output, Nature, vol.35, issue.7209, pp.64-71, 2008.
DOI : 10.1101/gr.229202. Article published online before March 2002

H. Oki-iwakawa and Y. Tomari, The Functions of MicroRNAs: mRNA Decay and Translational Repression, Trends in Cell Biology, vol.25, issue.11, pp.651-665, 2015.
DOI : 10.1016/j.tcb.2015.07.011

A. Kozomara, S. Griffiths, and -. , miRBase: annotating high confidence microRNAs using deep sequencing data, Nucleic Acids Research, vol.42, issue.D1, 2014.
DOI : 10.1093/nar/gkt1181

URL : https://academic.oup.com/nar/article-pdf/42/D1/D68/3618976/gkt1181.pdf

P. J. Lanier, J. A. De-jong, D. Bluestone, M. T. Srivastava, and . Mcmanus, A Resource for the Conditional Ablation of microRNAs in the Mouse, Cell Rep, vol.1, 2012.

E. A. Miska, E. Alvarez-saavedra, A. L. Abbott, N. C. Lau, A. B. Hellman et al., Most Caenorhabditis elegans microRNAs are individually not essential for development or viability, PLoS Genet, vol.3, pp.2395-2403, 2007.
DOI : 10.1371/journal.pgen.0030215.eor

URL : http://doi.org/10.1371/journal.pgen.0030215.eor

E. Alvarez-saavedra and H. R. Horvitz, Many Families of C. elegans MicroRNAs Are Not Essential for Development or Viability, Current Biology, vol.20, issue.4, 2010.
DOI : 10.1016/j.cub.2009.12.051

J. Li, M. Reichel, Y. Li, and A. A. Millar, The functional scope of plant microRNA-mediated silencing, Trends in Plant Science, vol.19, issue.12, pp.750-756, 2014.
DOI : 10.1016/j.tplants.2014.08.006

G. B. Loeb, A. A. Khan, D. Canner, J. B. Hiatt, J. Shendure et al., Transcriptome-wide miR-155 Binding Map Reveals Widespread Noncanonical MicroRNA Targeting, Molecular Cell, vol.48, issue.5, pp.760-70, 2012.
DOI : 10.1016/j.molcel.2012.10.002

URL : http://doi.org/10.1016/j.molcel.2012.10.002

G. , D. Leva, M. Garofalo, and C. M. Croce, MicroRNAs in cancer, Annu. Rev. Pathol, vol.9, pp.287-314, 2014.

J. M. Franco-zorrilla, A. Valli, M. Todesco, I. Mateos, M. I. Puga et al., Target mimicry provides a new mechanism for regulation of microRNA activity, Nature Genetics, vol.17, issue.8, pp.1033-103710, 1038.
DOI : 10.1038/ng2079

H. Seitz, Redefining MicroRNA Targets, Current Biology, vol.19, issue.10, 2009.
DOI : 10.1016/j.cub.2009.03.059

URL : https://hal.archives-ouvertes.fr/hal-00611806

L. Salmena, L. Poliseno, Y. Tay, L. Kats, and P. P. Pandolfi, A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language?, Cell, vol.146, issue.3, 2011.
DOI : 10.1016/j.cell.2011.07.014

M. S. Ebert, J. R. Neilson, and P. A. Sharp, MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells, Nature Methods, vol.18, issue.9, pp.721-727, 1079.
DOI : 10.1038/nmeth1079

A. D. Bosson, J. R. Zamudio, and P. A. Sharp, Endogenous miRNA and Target Concentrations Determine Susceptibility to Potential ceRNA Competition, Molecular Cell, vol.56, issue.3, 2014.
DOI : 10.1016/j.molcel.2014.09.018

URL : http://doi.org/10.1016/j.molcel.2014.09.018

M. Reichel, Y. Li, J. Li, and A. Millar, Inhibiting plant microRNA activity: molecular SPONGEs, target MIMICs and STTMs all display variable efficacies against target microRNAs, Plant Biotechnol. J, pp.13-915, 2015.
DOI : 10.1111/pbi.12327

K. S. Fröhlich and J. Vogel, Activation of gene expression by small RNA, Current Opinion in Microbiology, vol.12, issue.6, pp.674-682, 2009.
DOI : 10.1016/j.mib.2009.09.009

D. Lalaouna, M. C. Carrier, S. Semsey, J. S. Brouard, J. Wang et al., A 3??? External Transcribed Spacer in a tRNA Transcript Acts as a Sponge for Small RNAs to Prevent Transcriptional Noise, Molecular Cell, vol.58, issue.3, pp.393-405, 2015.
DOI : 10.1016/j.molcel.2015.03.013

L. Poliseno, L. Salmena, J. Zhang, B. Carver, W. J. Haveman et al., A coding-independent function of gene and pseudogene mRNAs regulates tumour biology, Nature, vol.33, issue.7301, pp.1033-1038, 2010.
DOI : 10.4161/cc.7.18.6734

Y. Tay, L. Kats, L. Salmena, D. Weiss, S. M. Tan et al., Coding-Independent Regulation of the Tumor Suppressor PTEN by Competing Endogenous mRNAs, Cell, vol.147, issue.2, pp.344-357, 2011.
DOI : 10.1016/j.cell.2011.09.029

F. A. Karreth, Y. Tay, D. Perna, U. Ala, S. M. Tan et al., In??Vivo Identification of Tumor- Suppressive PTEN ceRNAs in an Oncogenic BRAF-Induced Mouse Model of Melanoma, Cell, vol.147, issue.2, pp.382-395, 2011.
DOI : 10.1016/j.cell.2011.09.032

S. Memczak, M. Jens, A. Elefsinioti, and F. Torti, Circular RNAs are a large class of animal RNAs with regulatory potency, Nature, vol.40, issue.7441, pp.333-341, 2013.
DOI : 10.1093/nar/gkr688

T. B. Hansen, T. I. Jensen, B. H. Clausen, J. B. Bramsen, B. Finsen et al., Natural RNA circles function as efficient microRNA sponges, Nature, vol.175, issue.7441, pp.495-384, 2013.
DOI : 10.1007/s00221-006-0526-3

Q. Zheng, C. Bao, W. Guo, S. Li, J. Chen et al., Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs, Nature Communications, vol.7
DOI : 10.1371/journal.pgen.1002363

URL : http://www.nature.com/articles/ncomms11215.pdf

M. Jens and N. Rajewsky, Competition between target sites of regulators shapes post-transcriptional gene regulation, Nature Reviews Genetics, vol.768, issue.2, pp.113-139, 2015.
DOI : 10.1101/gad.182758.111

S. Srikantan, K. Tominaga, and M. Gorospe, Functional Interplay between RNA-Binding Protein HuR and microRNAs, Current Protein & Peptide Science, vol.13, issue.4, pp.372-379, 2012.
DOI : 10.2174/138920312801619394

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3535178/pdf

M. J. Moore, T. K. Scheel, J. M. Luna, C. Y. Park, J. J. Fak et al., miRNA???target chimeras reveal miRNA 3???-end pairing as a major determinant of Argonaute target specificity, Nature Communications, vol.5
DOI : 10.1038/ncomms3977

J. P. Broughton and A. E. Pasquinelli, A tale of two sequences: microRNA-target chimeric reads, Genetics Selection Evolution, vol.6, issue.1
DOI : 10.1038/ncomms9864

URL : https://hal.archives-ouvertes.fr/hal-01341365

A. Helwak, G. Kudla, T. Dudnakova, and D. Tollervey, Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding, Cell, vol.153, issue.3, 2013.
DOI : 10.1016/j.cell.2013.03.043

URL : http://doi.org/10.1016/j.cell.2013.03.043

J. Imig, A. Brunschweiger, A. Brümmer, B. Guennewig, N. Mittal et al., miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19???miR-106a interaction, Nature Chemical Biology, vol.732, issue.2, pp.107-121, 2015.
DOI : 10.1038/nsmb.2115

S. Lebedeva, M. Jens, K. Theil, B. Schwanhäusser, M. Selbach et al., Transcriptome-wide Analysis of Regulatory Interactions of the RNA-Binding Protein HuR, Molecular Cell, vol.43, issue.3, pp.340-352, 2011.
DOI : 10.1016/j.molcel.2011.06.008

A. Grimson, K. K. Farh, W. K. Johnston, P. Garrett-engele, L. P. Lim et al., MicroRNA Targeting Specificity in Mammals: Determinants beyond Seed Pairing, Molecular Cell, vol.27, issue.1, pp.91-105, 2007.
DOI : 10.1016/j.molcel.2007.06.017

URL : http://doi.org/10.1016/j.molcel.2007.06.017

H. C. Martin, S. Wani, A. L. Steptoe, K. Krishnan, K. Nones et al., Imperfect centered miRNA binding sites are common and can mediate repression of target mRNAs, Genome Biology, vol.15, issue.3, 2014.
DOI : 10.1073/pnas.0811466106

URL : https://genomebiology.biomedcentral.com/track/pdf/10.1186/gb-2014-15-3-r51?site=genomebiology.biomedcentral.com

S. W. Chi, G. J. Hannon, and R. B. Darnell, An alternative mode of microRNA target recognition, Nature Structural & Molecular Biology, vol.2, issue.3, pp.321-328, 2012.
DOI : 10.1016/S0092-8674(01)00568-2

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3541676

M. Khorshid, J. Hausser, M. Zavolan, and E. Van-nimwegen, A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets, Nature Methods, vol.460, issue.3, pp.253-258, 2013.
DOI : 10.1198/016214504000000683

S. Grosswendt, A. Filipchyk, M. Manzano, F. Klironomos, M. Schilling et al., Unambiguous Identification of miRNA:Target Site Interactions by Different Types of Ligation Reactions, Molecular Cell, vol.54, issue.6, pp.1042-1054, 2014.
DOI : 10.1016/j.molcel.2014.03.049

D. W. Thomson and M. E. Dinger, Endogenous microRNA sponges: evidence and controversy, Nature Reviews Genetics, vol.4, issue.5, 2016.
DOI : 10.1016/j.molcel.2015.11.014

Y. Tay, J. Rinn, and P. P. Pandolfi, The multilayered complexity of ceRNA crosstalk and competition, Nature, vol.498, issue.7483, pp.344-52, 2014.
DOI : 10.1038/nature12132

P. Xie, Y. Liu, Y. Li, M. Q. Zhang, and X. Wang, MIROR: a method for cell-type specific microRNA occupancy rate prediction, Mol. BioSyst., vol.19, issue.suppl, pp.1377-84, 2014.
DOI : 10.1038/nsmb.2214

R. Denzler, V. Agarwal, J. Stefano, D. P. Bartel, and M. Stoffel, Assessing the ceRNA Hypothesis with Quantitative Measurements of miRNA and Target Abundance, Molecular Cell, vol.54, issue.5, pp.766-776, 2014.
DOI : 10.1016/j.molcel.2014.03.045

I. López-de-silanes, M. Zhan, A. Lal, X. Yang, and M. Gorospe, Identification of a target RNA motif for RNA-binding protein HuR, Proceedings of the National Academy of Sciences, vol.278, issue.38, pp.2987-2992, 2004.
DOI : 10.1074/jbc.M302547200

N. Mukherjee, D. L. Corcoran, J. D. Nusbaum, D. W. Reid, S. Georgiev et al., Integrative Regulatory Mapping Indicates that the RNA-Binding Protein HuR Couples Pre-mRNA Processing and mRNA Stability, Molecular Cell, vol.43, issue.3, pp.327-339, 2011.
DOI : 10.1016/j.molcel.2011.06.007

URL : http://doi.org/10.1016/j.molcel.2011.06.007

J. Kim, K. Abdelmohsen, X. Yang, S. De, I. Grammatikakis et al., sponges RNA-binding protein HuR, Nucleic Acids Research, vol.44, issue.5, pp.2378-2392, 2016.
DOI : 10.1093/nar/gkw017

URL : https://academic.oup.com/nar/article-pdf/44/5/2378/17438174/gkw017.pdf

J. Konig, K. Zarnack, G. Rot, T. Curk, M. Kayikci et al., Ule, iCLIP--transcriptome-wide mapping of protein-RNA interactions with individual nucleotide resolution, J. Vis. Exp, pp.1-7, 2011.
DOI : 10.3791/2638

URL : https://www.jove.com/pdf/2638/iclip-transcriptome-wide-mapping-protein-rna-interactions-with

I. Huppertz, J. Attig, A. D-'ambrogio, L. E. Easton, C. R. Sibley et al., Ule, iCLIP: protein-RNA interactions at nucleotide resolution, pp.65-274, 2014.
DOI : 10.1016/j.ymeth.2013.10.011

URL : http://doi.org/10.1016/j.ymeth.2013.10.011

M. S. Ebert and P. A. Sharp, Emerging Roles for Natural MicroRNA Sponges, Current Biology, vol.20, issue.19, pp.858-861, 2010.
DOI : 10.1016/j.cub.2010.08.052

URL : http://doi.org/10.1016/j.cub.2010.08.052

M. S. Ebert and P. A. Sharp, MicroRNA sponges: Progress and possibilities, RNA, vol.16, issue.11
DOI : 10.1261/rna.2414110

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2957044

D. Bonci, V. Coppola, M. Musumeci, A. Addario, R. Giuffrida et al., THE MIR-15A/MIR-16-1 CLUSTER CONTROLS PROSTATE CANCER PROGRESSION CONTROL BY TARGETING OF MULTIPLE ONCOGENIC ACTIVITIES, The Journal of Urology, vol.181, issue.4, pp.1271-1277, 2008.
DOI : 10.1016/S0022-5347(09)60542-5

A. A. Millar and P. M. Waterhouse, Plant and animal microRNAs: similarities and differences, Functional & Integrative Genomics, vol.100, issue.3, pp.129-135, 2005.
DOI : 10.1007/s10142-005-0145-2

S. Mukherji, M. S. Ebert, G. X. Zheng, J. S. Tsang, P. A. Sharp et al., MicroRNAs can generate thresholds in target gene expression, Nature Genetics, vol.43, issue.9, pp.854-859, 2011.
DOI : 10.1126/science.1137999

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3163764

E. Levine and T. Hwa, Small RNAs establish gene expression thresholds, Current Opinion in Microbiology, vol.11, issue.6, pp.574-583, 2008.
DOI : 10.1016/j.mib.2008.09.016

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613760

N. E. Buchler and M. Louis, Molecular Titration and Ultrasensitivity in Regulatory Networks, Journal of Molecular Biology, vol.384, issue.5, pp.1106-1125, 2008.
DOI : 10.1016/j.jmb.2008.09.079

R. C. Brewster, F. M. Weinert, H. G. Garcia, D. Song, M. Rydenfelt et al., The Transcription Factor Titration Effect Dictates Level of Gene Expression, Cell, vol.156, issue.6, pp.1312-1335, 2014.
DOI : 10.1016/j.cell.2014.02.022

F. A. Karreth and P. P. Pandolfi, CeRNA cross-talk in cancer: When ce-bling rivalries go awry, Cancer Discov
DOI : 10.1158/2159-8290.cd-13-0202

URL : http://cancerdiscovery.aacrjournals.org/content/candisc/3/10/1113.full.pdf

J. A. Broderick and P. D. Zamore, Competitive Endogenous RNAs Cannot Alter MicroRNA Function In??Vivo, Molecular Cell, vol.54, issue.5, pp.711-713, 2014.
DOI : 10.1016/j.molcel.2014.05.023

URL : http://doi.org/10.1016/j.molcel.2014.05.023

Y. Pei and T. , On the art of identifying effective and specific siRNAs, Nature Methods, vol.7, issue.9, pp.670-676, 2006.
DOI : 10.4161/cc.3.6.892

D. Cazalla, T. Yario, and J. A. Steitz, Down-Regulation of a Host MicroRNA by a Herpesvirus saimiri Noncoding RNA, Science, vol.106, issue.32, pp.1563-1566, 2010.
DOI : 10.1073/pnas.0900210106

J. M. Luna, T. K. Scheel, T. Danino, K. S. Shaw, A. Mele et al., Hepatitis C Virus RNA Functionally Sequesters miR-122, Cell, vol.160, issue.6, pp.160-2015
DOI : 10.1016/j.cell.2015.02.025

URL : http://doi.org/10.1016/j.cell.2015.02.025

Y. Li, T. Masaki, D. Yamane, D. R. Mcgivern, and S. M. Lemon, Competing and noncompeting activities of miR-122 and the 5' exonuclease Xrn1 in regulation of hepatitis C virus replication, Proceedings of the National Academy of Sciences, vol.275, issue.1, pp.1881-1887, 2013.
DOI : 10.1016/S0076-6879(96)75005-X

C. Li, J. Hu, J. Hao, B. Zhao, B. Wu et al., Competitive virus and host RNAs: the interplay of a hidden virus and host interaction, Protein & Cell, vol.4, issue.Suppl 2, pp.348-356, 2014.
DOI : 10.3389/fgene.2013.00202

R. Adams, P. P. Chiarle, and . Pandolfi, The BRAF pseudogene functions as a competitive endogenous RNA and induces lymphoma in vivo

T. B. Hansen, J. Kjems, and C. K. Damgaard, Circular RNA and miR-7 in Cancer, Cancer Research, vol.73, issue.18, 2013.
DOI : 10.1158/0008-5472.CAN-13-1568

URL : http://cancerres.aacrjournals.org/content/canres/73/18/5609.full.pdf

D. K. Yip, I. K. Pang, and K. Y. Yip, Systematic exploration of autonomous modules in noisy microRNA-target networks for testing the generality of the ceRNA hypothesis, BMC Genomics, vol.15, issue.1, pp.1178-1188, 2014.
DOI : 10.1145/1656274.1656278

H. Chiu, D. Llobet-navas, X. Yang, W. Chung, A. Ambesi-impiombato et al., Cupid: simultaneous reconstruction of microRNA-target and ceRNA networks, Genome Research, vol.25, issue.2, pp.257-67, 2015.
DOI : 10.1101/gr.178194.114

URL : http://genome.cshlp.org/content/25/2/257.full.pdf

Z. Du, T. Sun, E. Hacisuleyman, T. Fei, X. Wang et al., Integrative analyses reveal a long noncoding RNAmediated sponge regulatory network in prostate cancer, Nat. Commun, vol.7
DOI : 10.1038/ncomms10982

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4796315

J. Hausser and M. Zavolan, Identification and consequences of miRNA???target interactions ??? beyond repression of gene expression, Nature Reviews Genetics, vol.8, issue.9, pp.599-612, 2014.
DOI : 10.1126/science.1215704

J. Breda, A. J. Rzepiela, R. Gumienny, E. Van-nimwegen, and M. Zavolan, Quantifying the strength of miRNA???target interactions, Methods, vol.85, p.85, 2015.
DOI : 10.1016/j.ymeth.2015.04.012

S. Vasudevan, Y. Tong, and J. A. Steitz, Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation, Science, vol.35, issue.7, pp.318-1931, 2007.
DOI : 10.1093/nar/gkm133

J. U. Guo, V. Agarwal, H. Guo, and D. P. , Expanded identification and characterization of mammalian circular RNAs, Genome Biology, vol.19, issue.7, 2014.
DOI : 10.1101/gr.073585.107

M. De-la-mata, D. Gaidatzis, M. Vitanescu, M. B. Stadler, C. Wentzel et al., Potent degradation of neuronal miRNAs induced by highly complementary targets, EMBO reports, vol.16, issue.4, pp.500-511, 2015.
DOI : 10.15252/embr.201540078

G. Haas, S. Cetin, M. Messmer, B. Chane-woon-ming, O. Terenzi et al., Identification of factors involved in target RNA-directed microRNA degradation, Nucleic Acids Research, vol.44, issue.6, pp.2873-87, 2016.
DOI : 10.1093/nar/gkw040

L. S. Waters and G. Storz, Regulatory RNAs in Bacteria, Cell, vol.136, issue.4, pp.615-628, 2009.
DOI : 10.1016/j.cell.2009.01.043

URL : http://doi.org/10.1016/j.cell.2009.01.043

E. G. Wagner and P. Romby, Small RNAs in Bacteria and Archaea, 2015.
DOI : 10.1016/bs.adgen.2015.05.001

A. A. Rasmussen, J. Johansen, J. S. Nielsen, M. Overgaard, B. Kallipolitis et al., A conserved small RNA promotes silencing of the outer membrane protein YbfM, Molecular Microbiology, vol.9, issue.3, 2009.
DOI : 10.1111/j.1365-2958.2009.06688.x

N. Figueroa-bossi, M. Valentini, L. Malleret, and L. Bossi, Caught at its own game: regulatory small RNA inactivated by an inducible transcript mimicking its target, Genes & Development, vol.23, issue.17, pp.2004-2015, 2009.
DOI : 10.1101/gad.541609

URL : http://genesdev.cshlp.org/content/23/17/2004.full.pdf

M. Overgaard, J. Johansen, J. Møller-jensen, and P. Valentin-hansen, Switching off small RNA regulation with trap-mRNA, Molecular Microbiology, vol.9, issue.5, 2009.
DOI : 10.1111/j.1365-2958.2009.06807.x

M. Miyakoshi, Y. Chao, and J. Vogel, Cross talk between ABC transporter mRNAs via a target mRNA-derived sponge of the GcvB small RNA, The EMBO Journal, vol.34, issue.11, pp.1478-1492, 2015.
DOI : 10.15252/embj.201490546

J. J. Tree, S. Granneman, S. P. Mcateer, D. Tollervey, and D. L. Gally, Identification of Bacteriophage-Encoded Anti-sRNAs in Pathogenic Escherichia coli, Molecular Cell, vol.55, issue.2, 2014.
DOI : 10.1016/j.molcel.2014.05.006

C. Bosia, A. Pagnani, and R. Zecchina, Modelling Competing Endogenous RNA Networks, PLoS ONE, vol.5, issue.7
DOI : 10.1371/journal.pone.0066609.s001

URL : http://doi.org/10.1371/journal.pone.0066609

S. Melamed, A. Peer, R. Faigenbaum-romm, Y. E. Gatt, N. Reiss et al., Global Mapping of Small RNA-Target Interactions in Bacteria, Molecular Cell, vol.63, issue.5, pp.884-97, 2016.
DOI : 10.1016/j.molcel.2016.07.026

A. Sanchez-mejias and Y. Tay, Competing endogenous RNA networks: tying the essential knots for cancer biology and therapeutics, Journal of Hematology & Oncology, vol.281, issue.Database issue, 2015.
DOI : 10.1111/febs.12880

URL : https://jhoonline.biomedcentral.com/track/pdf/10.1186/s13045-015-0129-1?site=jhoonline.biomedcentral.com

A. M. Schmitt and H. Y. Chang, Long Noncoding RNAs in Cancer Pathways, Cancer Cell, vol.29, issue.4, pp.452-63, 2016.
DOI : 10.1016/j.ccell.2016.03.010

URL : http://doi.org/10.1016/j.ccell.2016.03.010

P. G. Stockley, N. J. Stonehouse, J. B. Murray, S. T. Goodman, S. J. Talbot et al., Probing sequence-specific RNA recognition by the bacteriophage MS2 coat protien, Nucleic Acids Research, vol.23, issue.13, pp.2512-2518, 1995.
DOI : 10.1093/nar/23.13.2512

URL : https://academic.oup.com/nar/article-pdf/23/13/2512/7123169/23-13-2512.pdf

K. Tominaga, S. Srikantan, E. K. Lee, S. S. Subaran, J. L. Martindale et al., Competitive Regulation of Nucleolin Expression by HuR and miR-494, Molecular and Cellular Biology, vol.31, issue.20, pp.4219-4231, 2011.
DOI : 10.1128/MCB.05955-11

J. H. Yoon, S. Srikantan, and M. Gorospe, MS2-TRAP (MS2-tagged RNA affinity purification): Tagging RNA to identify associated miRNAs, Methods, vol.58, issue.2, pp.58-81, 2012.
DOI : 10.1016/j.ymeth.2012.07.004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493847

C. P. Corcoran, R. Rieder, D. Podkaminski, B. Hofmann, and J. Vogel, Use of Aptamer Tagging to Identify In Vivo Protein Binding Partners of Small Regulatory RNAs, Methods Mol. Biol, vol.905, pp.177-200, 2012.
DOI : 10.1007/978-1-61779-949-5_11

M. Carrier, D. Lalaouna, and E. Massé, A game of tag: MAPS catches up on RNA interactomes, RNA Biology, vol.15, issue.5, 2016.
DOI : 10.1016/j.gdata.2015.05.033

E. J. Shaffer, S. Shelton, U. Silveria, V. Ulmanella, F. Veeramachaneni et al., Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study, Nat. Methods, vol.11, pp.809-815, 2014.

J. M. Engreitz, K. Sirokman, P. Mcdonel, A. Shishkin, C. Surka et al., RNA-RNA Interactions Enable Specific Targeting of Noncoding RNAs to Nascent Pre-mRNAs and Chromatin Sites, Cell, vol.159, issue.1, pp.188-199, 2014.
DOI : 10.1016/j.cell.2014.08.018

M. Rehmsmeier, P. Steffen, M. Hochsmann, and R. Giegerich, Fast and effective prediction of microRNA/target duplexes, RNA, vol.10, issue.10, pp.1507-1524, 2004.
DOI : 10.1261/rna.5248604

S. W. Chi, J. B. Zang, A. Mele, and R. B. Darnell, Argonaute HITS-CLIP decodes microRNA???mRNA interaction maps, Nature, vol.318, pp.479-86, 2009.
DOI : 10.4161/rna.4.2.4640

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2733940

N. Mittal and M. Zavolan, Seq and CLIP through the miRNA world, Genome Biology, vol.15, issue.1
DOI : 10.1186/gb4151

URL : https://genomebiology.biomedcentral.com/track/pdf/10.1186/gb4151?site=genomebiology.biomedcentral.com

M. Hafner, M. Landthaler, L. Burger, M. Khorshid, J. Hausser et al., Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP, Cell, vol.141, issue.1, pp.141-129, 2010.
DOI : 10.1016/j.cell.2010.03.009

URL : http://doi.org/10.1016/j.cell.2010.03.009

Y. Zhang, S. Xie, H. Xu, and L. Qu, CLIP: viewing the RNA world from an RNA-protein interactome perspective, Science China Life Sciences, vol.40, issue.Suppl, pp.75-88, 2015.
DOI : 10.1093/nar/gks148

URL : https://link.springer.com/content/pdf/10.1007%2Fs11427-014-4764-5.pdf

S. M. Tan and J. Lieberman, Capture and Identification of miRNA Targets by Biotin Pulldown and RNA-seq, Methods Mol. Biol, pp.211-228, 2016.
DOI : 10.1007/978-1-4939-3067-8_13

H. A. Vincent, J. O. Phillips, C. A. Henderson, A. J. Roberts, C. M. Stone et al., An Improved Method for Surface Immobilisation of RNA: Application to Small Non-Coding RNA - mRNA Pairing, PLoS ONE, vol.65, issue.11
DOI : 10.1371/journal.pone.0079142.s001

G. Mullokandov, A. Baccarini, A. Ruzo, A. D. Jayaprakash, N. Tung et al., High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries, Nature Methods, vol.442, issue.8, pp.840-846, 2012.
DOI : 10.1128/JVI.05843-11

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518396

K. Le-brigand, K. Robbe-sermesant, B. Mari, and P. Barbry, MiRonTop: mining microRNAs targets across large scale gene expression studies, Bioinformatics, vol.26, issue.24, pp.3131-3132, 2010.
DOI : 10.1093/bioinformatics/btq589

URL : https://hal.archives-ouvertes.fr/hal-00585329

K. Papenfort and C. K. Vanderpool, Target activation by regulatory RNAs in bacteria, FEMS Microbiology Reviews, vol.39, issue.3, 2015.
DOI : 10.1093/femsre/fuv016

URL : https://academic.oup.com/femsre/article-pdf/39/3/362/10741263/fuv016.pdf

P. D. Hsu, E. S. Lander, and F. Zhang, Development and Applications of CRISPR-Cas9 for Genome Engineering, Cell, vol.157, issue.6, 2014.
DOI : 10.1016/j.cell.2014.05.010

S. Konermann, M. D. Brigham, A. E. Trevino, J. Joung, O. O. Abudayyeh et al., Genomescale transcriptional activation by an engineered CRISPR-Cas9 complex, Nature, pp.517-583, 1038.
DOI : 10.1038/nature14136

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4420636

J. C. Burnett and J. J. Rossi, RNA-Based Therapeutics: Current Progress and Future Prospects, Chemistry & Biology, vol.19, issue.1, pp.60-71, 2012.
DOI : 10.1016/j.chembiol.2011.12.008

URL : http://doi.org/10.1016/j.chembiol.2011.12.008

T. L. Jason, J. Koropatnick, and R. W. Berg, Toxicology of antisense therapeutics, Toxicology and Applied Pharmacology, vol.201, issue.1, pp.66-83, 2004.
DOI : 10.1016/j.taap.2004.04.017

C. F. Bennett and E. E. Swayze, RNA Targeting Therapeutics: Molecular Mechanisms of Antisense Oligonucleotides as a Therapeutic Platform, Annual Review of Pharmacology and Toxicology, vol.50, issue.1, 2010.
DOI : 10.1146/annurev.pharmtox.010909.105654

D. Braasch and D. R. Corey, Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA, Chemistry & Biology, vol.8, issue.1, pp.1-7, 2001.
DOI : 10.1016/S1074-5521(00)00058-2

M. Petersen and J. , LNA: a versatile tool for therapeutics and genomics, Trends in Biotechnology, vol.21, issue.2, pp.74-81, 2003.
DOI : 10.1016/S0167-7799(02)00038-0

E. E. Swayze, A. M. Siwkowski, E. V. Wancewicz, M. T. Migawa, T. K. Wyrzykiewicz et al., Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals, Nucleic Acids Research, vol.35, issue.2, pp.687-700, 2007.
DOI : 10.1093/nar/gkl1071

URL : https://academic.oup.com/nar/article-pdf/35/2/687/16757619/gkl1071.pdf

J. Elmén, M. Lindow, S. Schütz, M. Lawrence, A. Petri et al., LNA-mediated microRNA silencing in non-human primates, Nature, vol.120, issue.7189, pp.452-896, 2008.
DOI : 10.1038/nature06783

K. Fluiter, A. L. Ten-asbroek, M. B. De-wissel, M. E. Jakobs, M. Wissenbach et al., In vivo tumor growth inhibition and biodistribution studies of locked nucleic acid (LNA) antisense oligonucleotides, Nucleic Acids Research, vol.31, issue.3, pp.31-953, 2003.
DOI : 10.1093/nar/gkg185

M. Crooke, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial, Lancet, vol.375, issue.10, pp.998-1006, 2010.

C. Wahlestedt, P. Salmi, L. Good, J. Kela, T. Johnsson et al., Potent and nontoxic antisense oligonucleotides containing locked nucleic acids, Proceedings of the National Academy of Sciences, vol.258, issue.1-2, pp.5633-5638, 2000.
DOI : 10.1016/0014-2999(94)90072-8

URL : http://www.pnas.org/content/97/10/5633.full.pdf

R. Stanton, S. Sciabola, C. Salatto, Y. Weng, D. Moshinsky et al., Chemical modification study of antisense gapmers., Nucleic Acid Ther, pp.344-59, 2012.

L. Meng, A. J. Ward, S. Chun, C. F. Bennett, A. L. Beaudet et al., Towards a therapy for Angelman syndrome by targeting a long non-coding RNA, Nature, vol.77, issue.7539, p.10, 1038.
DOI : 10.1073/pnas.1318835110

A. Nakamura and S. Takeda, Exon-skipping therapy for Duchenne muscular dystrophy, The Lancet, vol.378, issue.9791, pp.546-547, 2011.
DOI : 10.1016/S0140-6736(11)61028-3

P. Hartmann, Z. Zhou, L. Natarelli, Y. Wei, M. Nazari-jahantigh et al., Endothelial Dicer promotes atherosclerosis and vascular inflammation by miRNA-103-mediated suppression of KLF4, Nat. Commun, vol.7

A. Messina, F. Langlet, K. Chachlaki, J. Roa, S. Rasika et al., A microRNA switch regulates the rise in hypothalamic GnRH production before puberty, Nature Neuroscience, vol.28, issue.6, pp.835-879, 2016.
DOI : 10.1038/nprot.2008.73

M. Agostini and R. A. Knight, miR-34: from bench to bedside, Oncotarget, vol.5, issue.4, pp.872-81, 2014.
DOI : 10.18632/oncotarget.1825

URL : http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=download&path%5B%5D=1825&path%5B%5D=2244

M. S. Beg, M. Borad, J. Sachdev, D. S. Hong, S. Smith et al., Abstract CT327: Multicenter phase I study of MRX34, a first-in-class microRNA miR-34 mimic liposomal injection, Cancer Research, vol.74, issue.19 Supplement, pp.327-32710, 2014.
DOI : 10.1158/1538-7445.AM2014-CT327

M. H. Van-der-ree, A. J. Van-der-meer, J. De-bruijne, R. Maan, A. Van-vliet et al., Long-term safety and efficacy of microRNA-targeted therapy in chronic hepatitis C patients, Antiviral Research, vol.111, pp.53-59, 2014.
DOI : 10.1016/j.antiviral.2014.08.015

H. L. Janssen, H. W. Reesink, E. J. Lawitz, S. Zeuzem, M. Rodriguez-torres et al., Treatment of HCV Infection by Targeting MicroRNA, New England Journal of Medicine, vol.368, issue.18, pp.1685-169410, 1056.
DOI : 10.1056/NEJMoa1209026

S. Thai and I. M. Kauppinen, LNA-mediated anti-miR-155 silencing in lowgrade B-cell lymphomas, Blood, vol.120, pp.1678-1686, 2012.