N. Kleckner, Meiosis: how could it work?, Proc. Natl. Acad. Sci. USA 1996, pp.8167-8174
DOI : 10.1073/pnas.93.16.8167

URL : http://www.pnas.org/content/93/16/8167.full.pdf

I. Lam and S. Keeney, Mechanism and regulation of meiotic recombination initiation [CrossRef] [PubMed] 3. Labib, K. How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells? Genes Dev, CrossRef] [PubMed] 4. Zegerman, P. Evolutionary conservation of the CDK targets in eukaryotic DNA replication initiation, pp.1208-1219, 2010.

D. O. Morgan, CYCLIN-DEPENDENT KINASES: Engines, Clocks, and Microprocessors, Annual Review of Cell and Developmental Biology, vol.13, issue.1, pp.261-291, 1997.
DOI : 10.1146/annurev.cellbio.13.1.261

K. Yata and F. Esashi, Dual role of CDKs in DNA repair: To be, or not to be, DNA Repair, vol.8, issue.1, pp.6-18, 2009.
DOI : 10.1016/j.dnarep.2008.09.002

S. Lim, P. J. Kaldis, P. Bernard, R. Antonelli, R. C. Allshire et al., Cdks, cyclins and CKIs: Roles beyond cell cycle regulation Hsk1-Dfp1 is required for heterochromatin-mediated cohesion at centromeres, Nat. Cell Biol, vol.140, issue.5, pp.3079-3093, 2003.

T. Tsuji, E. Lau, G. G. Chiang, and W. Jiang, The Role of Dbf4/Drf1-Dependent Kinase Cdc7 in DNA-Damage Checkpoint Control, Molecular Cell, vol.32, issue.6, pp.862-869, 2008.
DOI : 10.1016/j.molcel.2008.12.005

T. S. Takahashi, A. Basu, V. Bermudez, J. Hurwitz, and J. Walter, Cdc7-Drf1 kinase links chromosome cohesion to the initiation of DNA replication in Xenopus egg extracts, Genes & Development, vol.22, issue.14, pp.1894-1905, 2008.
DOI : 10.1101/gad.1683308

K. Furuya, I. Miyabe, Y. Tsutsui, F. Paderi, N. Kakusho et al., DDK Phosphorylates Checkpoint Clamp Component Rad9 and Promotes Its Release from Damaged Chromatin, Molecular Cell, vol.40, issue.4, pp.606-618, 2010.
DOI : 10.1016/j.molcel.2010.10.026

URL : https://doi.org/10.1016/j.molcel.2010.10.026

A. Y. Lee, -. Chiba, T. Truong, L. N. Cheng, A. N. Do et al., Dbf4 Is Direct Downstream Target of Ataxia Telangiectasia Mutated (ATM) and Ataxia Telangiectasia and Rad3-related (ATR) Protein to Regulate Intra-S-phase Checkpoint, Journal of Biological Chemistry, vol.113, issue.4, pp.2531-2543, 2012.
DOI : 10.1073/pnas.0403410101

K. Ogino, K. Hirota, S. Matsumoto, T. Takeda, K. Ohta et al., Hsk1 kinase is required for induction of meiotic dsDNA breaks without involving checkpoint kinases in fission yeast, Proc. Natl. Acad
DOI : 10.1128/MCB.19.8.5535

L. Wan, C. Zhang, K. M. Shokat, and N. M. Hollingsworth, Chemical Inactivation of Cdc7 Kinase in Budding Yeast Results in a Reversible Arrest That Allows Efficient Cell Synchronization Prior to Meiotic Recombination, Genetics, vol.174, issue.4, pp.1767-1774, 2006.
DOI : 10.1534/genetics.106.064303

H. Lo, L. Wan, A. Rosebrock, B. Futcher, and N. M. Hollingsworth, Transcription as Well as Reductional Segregation during Budding Yeast Meiosis, Molecular Biology of the Cell, vol.15, issue.11, pp.4956-4967, 2008.
DOI : 10.1128/MCB.15.12.6572

URL : http://www.molbiolcell.org/content/19/11/4956.full.pdf

J. Matos, J. J. Lipp, A. Bogdanova, S. Guillot, E. Okaz et al., Dbf4-Dependent Cdc7 Kinase Links DNA Replication to the Segregation of Homologous Chromosomes??in Meiosis I, Cell, vol.135, issue.4, pp.662-678, 2008.
DOI : 10.1016/j.cell.2008.10.026

H. Sasanuma, K. Hirota, T. Fukuda, N. Kakusho, K. Kugou et al., Cdc7-dependent phosphorylation of Mer2 facilitates initiation of yeast meiotic recombination, Genes & Development, vol.22, issue.3, pp.398-410, 2008.
DOI : 10.1101/gad.1626608

L. Wan, H. Niu, B. Futcher, C. Zhang, K. M. Shokat et al., Cdc28-Clb5 (CDK-S) and Cdc7-Dbf4 (DDK) collaborate to initiate meiotic recombination in yeast, Genes & Development, vol.22, issue.3, pp.386-397, 2008.
DOI : 10.1101/gad.1626408

H. Masai, E. Matsui, Z. You, Y. Ishimi, K. Tamai et al., Human Cdc7-related Kinase Complex, Journal of Biological Chemistry, vol.12, issue.37, pp.29042-29052, 2000.
DOI : 10.1074/jbc.M909040199

URL : http://www.jbc.org/content/275/37/29042.full.pdf

R. Nougarède, . Seta, F. Della, P. Zarzov, and E. Schwob, Hierarchy of S-Phase-Promoting Factors: Yeast Dbf4-Cdc7 Kinase Requires Prior S-Phase Cyclin-Dependent Kinase Activation, Molecular and Cellular Biology, vol.20, issue.11, pp.3795-3806, 2000.
DOI : 10.1128/MCB.20.11.3795-3806.2000

A. Devault, E. Gueydon, and E. Schwob, Interplay between S-Cyclin-dependent Kinase and Dbf4-dependent Kinase in Controlling DNA Replication through Phosphorylation of Yeast Mcm4 N-Terminal Domain, Molecular Biology of the Cell, vol.20, issue.5
DOI : 10.1128/MCB.20.9.3086-3096.2000

URL : https://hal.archives-ouvertes.fr/hal-00350202

Y. Sheu and B. Stillman, The Dbf4???Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4, Nature, vol.16, issue.7277, pp.113-117, 2010.
DOI : 10.1038/nature08647

B. P. Larasati-;-duncker, Mechanisms Governing DDK Regulation of the Initiation of DNA Replication, Genes, vol.8, issue.3, 2016.

K. Kitada, L. H. Johnston, T. Sugino, and A. Sugino, Temperature-sensitive Cdc7 mutations of Saccharomyces cerevisiae are suppressed by the DBF4 gene, which is required for the G1/S cell cycle transition, Genetics, vol.131, pp.21-29, 1992.

A. L. Jackson, P. M. Pahl, K. Harrison, J. Rosamond, and R. A. Sclafani, Cell cycle regulation of the yeast Cdc7 protein kinase by association with the Dbf4 protein., Molecular and Cellular Biology, vol.13, issue.5, pp.2899-2908, 1993.
DOI : 10.1128/MCB.13.5.2899

A. Montagnoli, R. Bosotti, F. Villa, M. Rialland, D. Brotherton et al., Drf1, a novel regulatory subunit for human Cdc7 kinase, The EMBO Journal, vol.21, issue.12, pp.3171-3181, 2002.
DOI : 10.1093/emboj/cdf290

T. S. Takahashi and J. Walter, Cdc7-Drf1 is a developmentally regulated protein kinase required for the initiation of vertebrate DNA replication, Genes & Development, vol.19, issue.19, pp.2295-2300, 2005.
DOI : 10.1101/gad.1339805

D. L. Fisher and P. Nurse, A single fission yeast mitotic cyclin B p34cdc2 kinase promotes both S-phase and mitosis in the absence of G1 cyclins, EMBO J, vol.15, pp.850-860, 1996.

B. Stern and P. Nurse, A quantitative model for the cdc2 control of S phase and mitosis in fission yeast, Trends in Genetics, vol.12, issue.9, pp.345-350, 1996.
DOI : 10.1016/S0168-9525(96)80016-3

A. D. Donaldson, M. K. Raghuraman, K. L. Friedman, F. R. Cross, B. J. Brewer et al., CLB5-Dependent Activation of Late Replication Origins in S. cerevisiae, Molecular Cell, vol.2, issue.2, pp.173-182, 1998.
DOI : 10.1016/S1097-2765(00)80127-6

F. Hu and O. M. Aparicio, Swe1 regulation and transcriptional control restrict the activity of mitotic cyclins toward replication proteins in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 2005, pp.8910-8915
DOI : 10.1126/science.1081418

J. D. Moore, J. A. Kirk, and T. Hunt, Unmasking the S-Phase-Promoting Potential of Cyclin B1, Science, vol.300, issue.5621, pp.987-990, 2003.
DOI : 10.1126/science.1081418

K. Kozar, M. A. Ciemerych, V. I. Rebel, H. Shigematsu, A. Zagozdzon et al., Mouse Development and Cell Proliferation in the Absence of D-Cyclins, Cell, vol.118, issue.4, pp.477-491, 2004.
DOI : 10.1016/j.cell.2004.07.025

D. Santamaría, C. Barrière, A. Cerqueira, S. Hunt, C. Tardy et al., Cdk1 is sufficient to drive the mammalian cell cycle, Nature, vol.14, issue.7155, pp.811-815, 2007.
DOI : 10.1006/meth.2001.1262

D. Coudreuse and P. Nurse, Driving the cell cycle with a minimal CDK control network, Nature, vol.33, issue.7327, pp.1074-1079, 2010.
DOI : 10.1091/mbc.9.8.2107

URL : https://hal.archives-ouvertes.fr/hal-01120603

R. T. Johnson and P. N. Rao, Mammalian Cell Fusion : Induction of Premature Chromosome Condensation in Interphase Nuclei, Nature, vol.35, issue.5247, pp.717-722, 1970.
DOI : 10.1016/0005-2787(69)90249-4

G. Banyai, F. Baïdi, D. Coudreuse, and Z. Szilagyi, Cdk1 activity acts as a quantitative platform for coordinating cell cycle progression with periodic transcription, Nature Communications, vol.11, 2016.
DOI : 10.1186/gb-2010-11-10-r106

URL : https://hal.archives-ouvertes.fr/hal-01299978

S. J. Rahi, K. Pecani, A. Ondracka, C. Oikonomou, and F. Cross, The CDK-APC/C Oscillator Predominantly Entrains Periodic Cell-Cycle Transcription, Cell, vol.165, issue.2, pp.475-487, 2016.
DOI : 10.1016/j.cell.2016.02.060

M. P. Swaffer, A. W. Jones, H. R. Flynn, A. P. Snijders, and P. Nurse, CDK Substrate Phosphorylation and Ordering the Cell Cycle, Cell, vol.167, issue.7, pp.1750-1761, 2016.
DOI : 10.1016/j.cell.2016.11.034

G. W. Brown and T. J. Kelly, Cell cycle regulation of Dfp1, an activator of the Hsk1 protein kinase, Proc. Natl. Acad. Sci. USA 1999, pp.8443-8448
DOI : 10.1038/374817a0

G. Oshiro, J. C. Owens, Y. Shellman, R. A. Sclafani, and J. J. Li, Cell Cycle Control of Cdc7p Kinase Activity through Regulation of Dbf4p Stability, Molecular and Cellular Biology, vol.19, issue.7, pp.4888-4896, 1999.
DOI : 10.1128/MCB.19.7.4888

T. Takeda, K. Ogino, E. Matsui, M. K. Cho, H. Kumagai et al., , Encoding a Regulatory Subunit for Hsk1 Kinase, Plays Essential Roles in S-Phase Initiation as Well as in S-Phase Checkpoint Control and Recovery from DNA Damage, Molecular and Cellular Biology, vol.19, issue.8, pp.5535-5547, 1999.
DOI : 10.1128/MCB.19.8.5535

M. F. Ferreira, C. Santocanale, L. S. Drury, and J. Diffley, Dbf4p, an Essential S Phase-Promoting Factor, Is Targeted for Degradation by the Anaphase-Promoting Complex, Molecular and Cellular Biology, vol.20, issue.1, pp.242-248, 2000.
DOI : 10.1128/MCB.20.1.242-248.2000

R. A. Sclafani, M. Patterson, J. Rosamond, and W. L. Fangman, Differential regulation of the yeast CDC7 gene during mitosis and meiosis., Molecular and Cellular Biology, vol.8, issue.1, pp.293-300, 1988.
DOI : 10.1128/MCB.8.1.293

P. K. Patel, N. Kommajosyula, A. Rosebrock, A. Bensimon, J. Leatherwood et al., The Hsk1(Cdc7) Replication Kinase Regulates Origin Efficiency, Molecular Biology of the Cell, vol.12, issue.12, pp.5550-5558, 2008.
DOI : 10.1016/S0960-9822(02)00871-0

P. J. Wu and P. Nurse, Establishing the Program of Origin Firing during S Phase in Fission Yeast, Cell, vol.136, issue.5, pp.852-864, 2009.
DOI : 10.1016/j.cell.2009.01.017

D. Mantiero, A. Mackenzie, A. Donaldson, and P. Zegerman, Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast, The EMBO Journal, vol.467, issue.23, pp.4805-4814, 2011.
DOI : 10.1038/nature09373

N. Grandin and S. I. Reed, Differential function and expression of Saccharomyces cerevisiae B-type cyclins in mitosis and meiosis., Molecular and Cellular Biology, vol.13, issue.4, pp.2113-2125, 1993.
DOI : 10.1128/MCB.13.4.2113

S. Chu and I. Herskowitz, Gametogenesis in Yeast Is Regulated by a Transcriptional Cascade Dependent on Ndt80, Molecular Cell, vol.1, issue.5, pp.685-696, 1998.
DOI : 10.1016/S1097-2765(00)80068-4

C. Dahmann and B. Futcher, Specialization of B-type cyclins for mitosis or meiosis in S. cerevisiae, Genetics, vol.140, pp.957-963, 1995.

T. M. Carlile and A. Amon, Meiosis I Is Established through Division-Specific Translational Control of a Cyclin, Cell, vol.133, issue.2, pp.280-291, 2008.
DOI : 10.1016/j.cell.2008.02.032

E. Schwob and K. Nasmyth, CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae., Genes & Development, vol.7, issue.7a, pp.1160-1175, 1993.
DOI : 10.1101/gad.7.7a.1160

L. Dirick, L. Goetsch, G. Ammerer, and B. Byers, Regulation of Meiotic S Phase by Ime2 and a Clb5,6-Associated Kinase in Saccharomyces cerevisiae, Science, vol.281, issue.5384, pp.1854-1857, 1998.
DOI : 10.1126/science.281.5384.1854

D. Stuart and C. Wittenberg, CLB5 and CLB6 are required for premeiotic DNA replication and activation of the meiotic S/M checkpoint, Genes & Development, vol.12, issue.17, pp.2698-2710, 1998.
DOI : 10.1101/gad.12.17.2698

J. M. Decesare and D. T. Stuart, Among B-Type Cyclins Only CLB5 and CLB6 Promote Premeiotic S Phase in Saccharomyces cerevisiae, Genetics, vol.190, issue.3, pp.1001-1016
DOI : 10.1534/genetics.111.134684

K. N. Smith, A. Penkner, K. Ohta, F. Klein, and A. Nicolas, B-type cyclins CLB5 and CLB6 control the initiation of recombination and synaptonemal complex formation in yeast meiosis, Current Biology, vol.11, issue.2, pp.88-97, 2001.
DOI : 10.1016/S0960-9822(01)00026-4

P. Gutiérrez-escribano and P. Nurse, A single cyclin???CDK complex is sufficient for both mitotic and meiotic progression in fission yeast, Nature Communications, vol.6, issue.1, p.6871
DOI : 10.1091/mbc.6.4.371

J. Malapeira, A. Moldón, E. Hidalgo, G. R. Smith, P. Nurse et al., A Meiosis-Specific Cyclin Regulated by Splicing Is Required for Proper Progression through Meiosis, Molecular and Cellular Biology, vol.25, issue.15, pp.6330-6337, 2005.
DOI : 10.1128/MCB.25.15.6330-6337.2005

Y. Geng, Q. Yu, E. Sicinska, M. Das, J. E. Schneider et al., Cyclin E Ablation in the Mouse, Cell, vol.114, issue.4, pp.431-443, 2003.
DOI : 10.1016/S0092-8674(03)00645-7

D. Liu, M. M. Matzuk, W. K. Sung, Q. Guo, P. Wang et al., Cyclin A1 is required for meiosis in the male mouse, Nature Genetics, vol.124, issue.4, pp.377-380, 1998.
DOI : 10.1006/dbio.1994.1270

K. R. Benjamin, K. R. Benjamin, C. Zhang, C. Zhang, K. M. Shokat et al., Control of landmark events in meiosis by the CDK Cdc28 and the meiosis-specific kinase Ime2, Genes & Development, vol.17, issue.12, pp.1524-1539, 2003.
DOI : 10.1101/gad.1101503

M. Szwarcwort-cohen, Z. Kasulin-boneh, S. Sagee, and Y. Kassir, Human Cdk2 is a functional homolog of budding yeast Ime2, the meiosis-specific Cdk-like kinase, Cell Cycle, vol.8, issue.4, pp.647-654, 2009.
DOI : 10.4161/cc.8.4.7843

S. M. Honigberg, Ime2p and Cdc28p: Co-pilots driving meiotic development, Journal of Cellular Biochemistry, vol.74, issue.5, pp.1025-1033, 2004.
DOI : 10.1128/MCB.15.12.6572

N. Averbeck, S. Sunder, N. Sample, J. A. Wise, and J. Leatherwood, Negative Control Contributes to an Extensive Program of Meiotic Splicing in Fission Yeast, Molecular Cell, vol.18, issue.4, pp.491-498, 2005.
DOI : 10.1016/j.molcel.2005.04.007

A. Borgne, H. Murakami, and J. Ayté, The G1/S Cyclin Cig2p during Meiosis in Fission Yeast, Molecular Biology of the Cell, vol.21, issue.6, pp.2080-2090, 2002.
DOI : 10.1016/S0968-0004(06)80022-8

D. Schild and B. Byers, Meiotic effects of DNA-defective cell division cycle mutations of Saccharomyces cerevisiae, Chromosoma, vol.74, issue.1, pp.109-130, 1978.
DOI : 10.1007/BF00292220

R. E. Hollingsworth and R. A. Sclafani, Yeast pre-meiotic DNA replication utilizes mitotic origin ARS1 independently of CDC7 function, Chromosoma, vol.10, issue.6, pp.415-420, 1993.
DOI : 10.1007/BF00360406

T. Nakamura, M. Nakamura-kubo, T. Nakamura, and C. Shimoda, Novel Fission Yeast Cdc7-Dbf4-Like Kinase Complex Required for the Initiation and Progression of Meiotic Second Division, Molecular and Cellular Biology, vol.22, issue.1, pp.309-320, 2002.
DOI : 10.1128/MCB.22.1.309-320.2002

I. Kovacikova, S. Polakova, Z. Benko, L. Cipak, L. Zhang et al., A knockout screen for protein kinases required for the proper meiotic segregation of chromosomes in the fission yeast Schizosaccharomyces pombe, Cell Cycle, vol.11, issue.4, pp.618-624, 2013.
DOI : 10.4161/cc.10.6.15032

A. D. Donaldson, F. R. Cross, M. K. Raghuraman, K. Levine, K. L. Friedman et al., Molecular evolution allows bypass of the requirement for activation loop phosphorylation of the Cdc28 cyclin-dependent kinase, Mol. Cell. Biol, vol.18, pp.2923-2931, 1998.

P. Kaldis, Z. W. Pitluk, I. A. Bany, D. A. Enke, M. Wagner et al., Localization and regulation of the cdk-activating kinase (Cak1p) from budding yeast, J. Cell Sci, vol.111, pp.3585-3596, 1998.

E. Schwob, T. Böhm, M. D. Mendenhall, and K. Nasmyth, The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae, Cell, vol.79, issue.2, pp.233-244, 1994.
DOI : 10.1016/0092-8674(94)90193-7

R. Verma, R. S. Annan, M. J. Huddleston, S. A. Carr, G. Reynard et al., Phosphorylation of Sic1p by G1 Cdk Required for Its Degradation and Entry into S Phase, Science, vol.278, issue.5337, pp.455-460, 1997.
DOI : 10.1126/science.278.5337.455

K. Schindler, K. R. Benjamin, A. Martin, A. Boglioli, I. Herskowitz et al., The Cdk-Activating Kinase Cak1p Promotes Meiotic S Phase through Ime2p, Molecular and Cellular Biology, vol.23, issue.23, pp.8718-8728, 2003.
DOI : 10.1128/MCB.23.23.8718-8728.2003

H. Murakami and P. Nurse, Regulation of premeiotic S phase and recombination-related double-strand DNA breaks during meiosis in fission yeast, Nature Genetics, vol.11, issue.3, pp.290-293, 2001.
DOI : 10.1101/gad.11.21.2767

K. Lindner, J. Gregan, S. Montgomery, and S. E. Kearsey, Essential Role of MCM Proteins in Premeiotic DNA Replication, Molecular Biology of the Cell, vol.269, issue.2, pp.435-444, 2002.
DOI : 10.1091/mbc.8.12.2475

Y. Ofir, S. Sagee, N. Guttmann-raviv, L. Pnueli, and Y. Kassir, The Role and Regulation of the preRC Component Cdc6 in the Initiation of Premeiotic DNA Replication, Molecular Biology of the Cell, vol.15, issue.5, pp.2230-2242, 2004.
DOI : 10.1128/MCB.20.9.3086-3096.2000

D. H. Williamson, L. H. Johnston, D. J. Fennell, and G. Simchen, The timing of the S phase and other nuclear events in yeast meiosis, Experimental Cell Research, vol.145, issue.1, pp.209-217, 1983.
DOI : 10.1016/S0014-4827(83)80022-6

R. S. Cha, B. M. Weiner, S. Keeney, J. Dekker, and N. Kleckner, Progression of meiotic DNA replication is modulated by interchromosomal interaction proteins, negatively by Spo11p and positively by Rec8p, Genes Dev, vol.14, pp.493-503, 2000.

C. Heichinger, C. J. Penkett, J. Bähler, and P. Nurse, Genome-wide characterization of fission yeast DNA replication origins, The EMBO Journal, vol.7, issue.21, pp.5171-5179, 2006.
DOI : 10.1091/mbc.12.11.3317

H. G. Blitzblau, C. S. Chan, A. Hochwagen, and S. P. Bell, Separation of DNA Replication from the Assembly of Break-Competent Meiotic Chromosomes, PLoS Genetics, vol.477, issue.5, 2012.
DOI : 10.1371/journal.pgen.1002643.s013

P. J. Wu and P. Nurse, Replication Origin Selection Regulates the Distribution of Meiotic Recombination, Molecular Cell, vol.53, issue.4, pp.655-662, 2014.
DOI : 10.1016/j.molcel.2014.01.022

URL : https://hal.archives-ouvertes.fr/hal-01010761

P. B. Holm, The premeiotic DNA replication of euchromatin and heterochromatin in Lilium longiflorum (Thunb.), Carlsberg Research Communications, vol.108, issue.Suppl. 1, pp.249-281, 1977.
DOI : 10.1038/newbio237191a0

W. Cho, Y. Lee, S. Kong, J. Hurwitz, and J. Lee, CDC7 kinase phosphorylates serine residues adjacent to acidic amino acids in the minichromosome maintenance 2 protein, Proc. Natl. Acad. Sci, pp.11521-11526, 2006.
DOI : 10.1128/MCB.20.11.3795-3806.2000

P. Zegerman and J. F. Diffley, Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast, Nature, vol.14, issue.7125, pp.281-285, 2007.
DOI : 10.1128/MCB.14.2.923

S. Tanaka, T. Umemori, K. Hirai, S. Muramatsu, Y. Kamimura et al., CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast, Nature, vol.4, issue.7125, pp.328-332, 2007.
DOI : 10.1016/j.dnarep.2005.04.001

R. C. Heller, S. Kang, W. M. Lam, S. Chen, C. S. Chan et al., Eukaryotic Origin-Dependent DNA Replication In??Vitro Reveals Sequential Action of DDK and S-CDK Kinases, Cell, vol.146, issue.1, pp.80-91, 2011.
DOI : 10.1016/j.cell.2011.06.012

J. T. Yeeles, T. D. Deegan, A. Janska, A. Early, and J. F. Diffley, Regulated eukaryotic DNA replication origin firing with purified proteins, Nature, vol.15, issue.7544, pp.431-435, 2015.
DOI : 10.1093/nar/15.3.1281

URL : http://europepmc.org/articles/pmc4874468?pdf=render

M. Fragkos, O. Ganier, P. Coulombe, and M. Méchali, DNA replication origin activation in space and time, Nature Reviews Molecular Cell Biology, vol.18, issue.6, pp.360-374
DOI : 10.1007/s10577-009-9105-3

URL : https://hal.archives-ouvertes.fr/hal-01159618

A. Picard, S. Galas, G. Peaucellier, and M. Dorée, Newly assembled cyclin B-cdc2 kinase is required to suppress DNA replication between meiosis I and meiosis II in starfish oocytes, EMBO J, vol.15, pp.3590-3598, 1996.

M. Iwabuchi, Residual Cdc2 activity remaining at meiosis I exit is essential for meiotic M-M transition in Xenopus oocyte extracts, The EMBO Journal, vol.19, issue.17, pp.4513-4523, 2000.
DOI : 10.1093/emboj/19.17.4513

N. Nakajo, S. Yoshitome, J. Iwashita, M. Iida, K. Uto et al., Absence of Wee1 ensures the meiotic cell cycle in Xenopus oocytes, Genes Dev, vol.14, pp.328-338, 2000.

J. A. Pesin and T. L. Orr-weaver, Regulation of APC/C Activators in Mitosis and Meiosis, Annual Review of Cell and Developmental Biology, vol.24, issue.1, pp.475-499, 2008.
DOI : 10.1146/annurev.cellbio.041408.115949

K. F. Cooper and R. Strich, Meiotic control of the APC/C: similarities & differences from mitosis, Cell Division, vol.6, issue.1, p.16, 2011.
DOI : 10.1016/S0960-9822(03)00581-5

N. Furuno, M. Nishizawa, K. Okazaki, H. Tanaka, J. Iwashita et al., Suppression of DNA replication via Mos function during meiotic divisions in Xenopus oocytes, EMBO J, vol.13, pp.2399-2410, 1994.

K. Tachibana, D. Tanaka, T. Isobe, and T. Kishimoto, c-Mos forces the mitotic cell cycle to undergo meiosis II to produce haploid gametes, Proc. Natl. Acad. Sci, pp.14301-14306, 2000.
DOI : 10.1073/pnas.86.18.7038

H. Hua, M. Namdar, O. Ganier, J. Gregan, M. Méchali et al., Sequential steps in DNA replication are inhibited to ensure reduction of ploidy in meiosis, Molecular Biology of the Cell, vol.26, issue.5, pp.578-587, 2013.
DOI : 10.1128/MCB.02141-05

URL : https://hal.archives-ouvertes.fr/hal-00797834

J. Knockleby, B. J. Kim, A. Mehta, and H. Lee, Cdk1-mediated phosphorylation of Cdc7 suppresses DNA re-replication, Cell Cycle, vol.154, issue.11, pp.1494-1505, 2016.
DOI : 10.1016/j.bmc.2009.08.068

E. Whitmire, B. Khan, and M. Coué, Cdc6 synthesis regulates replication competence in Xenopus oocytes, Nature, vol.90, issue.Pt 1, pp.722-725, 2002.
DOI : 10.1111/j.1768-322X.1998.tb01059.x

H. Murakami and S. Keeney, Regulating the formation of DNA double-strand breaks in meiosis, Genes & Development, vol.22, issue.3, pp.286-292, 2008.
DOI : 10.1101/gad.1642308

A. Hochwagen, W. Tham, and G. Brar, The FK506 Binding Protein Fpr3 Counteracts Protein Phosphatase 1 to Maintain Meiotic Recombination Checkpoint Activity, Cell, vol.122, issue.6, pp.861-873, 2005.
DOI : 10.1016/j.cell.2005.07.010

Y. Tonami, H. Murakami, K. Shirahige, and M. Nakanishi, A checkpoint control linking meiotic S phase and recombination initiation in fission yeast, Proc. Natl. Acad. Sci. USA 2005, pp.5797-5801
DOI : 10.1038/ncb789

K. Ogino and H. Masai, Rad3-Cds1 Mediates Coupling of Initiation of Meiotic Recombination with DNA Replication, Journal of Biological Chemistry, vol.154, issue.3, pp.1338-1344, 2006.
DOI : 10.1038/sj.emboj.7600138

V. Borde, A. S. Goldman, and M. Lichten, Direct Coupling Between Meiotic DNA Replication and Recombination Initiation, Science, vol.290, issue.5492, pp.806-809, 2000.
DOI : 10.1126/science.290.5492.806

H. Murakami, V. Borde, T. Shibata, M. Lichten, and K. Ohta, Correlation between premeiotic DNA replication and chromatin transition at yeast recombination initiation sites, Nucleic Acids Research, vol.31, issue.14, pp.4085-4090, 2003.
DOI : 10.1093/nar/gkg441

URL : https://academic.oup.com/nar/article-pdf/31/14/4085/9488348/gkg441.pdf

K. A. Henderson, K. Kee, S. Maleki, P. A. Santini, and S. Keeney, Cyclin-Dependent Kinase Directly Regulates Initiation of Meiotic Recombination, Cell, vol.125, issue.7, pp.1321-1332, 2006.
DOI : 10.1016/j.cell.2006.04.039

S. Matsumoto, K. Ogino, E. Noguchi, P. Russell, and H. Masai, , Associates with Swi1, a Component of the Replication Fork Protection Complex, Journal of Biological Chemistry, vol.265, issue.52, pp.42536-42542, 2005.
DOI : 10.1016/j.jmb.2005.01.041

H. Murakami and S. Keeney, Temporospatial coordination of meiotic DNA replication and recombination via DDK recruitment to replisomes, Cell, vol.2014, issue.158, pp.861-873

R. Ceccaldi, B. Rondinelli, and A. D. Andrea, Repair Pathway Choices and Consequences at the Double-Strand Break, Trends in Cell Biology, vol.26, issue.1, pp.52-64, 2016.
DOI : 10.1016/j.tcb.2015.07.009

K. Lindner, M. Sasaki, J. Gregan, J. Lange, S. Montgomery et al., Genome destabilization by homologous recombination in the germ line, Nat. Rev. Mol. Cell Biol, vol.11, pp.182-195, 2010.

Y. Aylon, B. Liefshitz, and M. Kupiec, The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle, The EMBO Journal, vol.12, issue.24, pp.4868-4875, 2004.
DOI : 10.1126/science.1083430

G. Ira, A. Pellicioli, A. Balijja, X. Wang, S. Fiorani et al., DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1, Nature, vol.31, issue.7011, pp.1011-1017, 2004.
DOI : 10.1016/S1097-2765(01)00388-4

URL : http://europepmc.org/articles/pmc4493751?pdf=render

M. G. Ferreira and J. P. Cooper, Two modes of DNA double-strand break repair are reciprocally regulated through the fission yeast cell cycle, Genes & Development, vol.18, issue.18, pp.2249-2254, 2004.
DOI : 10.1101/gad.315804

P. Hentges, H. Waller, C. C. Reis, M. G. Ferreira, and A. J. Doherty, Cdk1 Restrains NHEJ through Phosphorylation of XRCC4-like Factor Xlf1, Cell Reports, vol.9, issue.6, pp.2011-2017
DOI : 10.1016/j.celrep.2014.11.044

W. Heyer, K. T. Ehmsen, and J. Liu, Regulation of Homologous Recombination in Eukaryotes, Annual Review of Genetics, vol.44, issue.1, pp.113-139, 2010.
DOI : 10.1146/annurev-genet-051710-150955

L. P. Ferretti, L. Lafranchi, and A. A. Sartori, Controlling DNA-end resection: a new task for CDKs, Frontiers in Genetics, vol.4, 1999.
DOI : 10.3389/fgene.2013.00099

P. Huertas, F. Cortés-ledesma, A. A. Sartori, A. Aguilera, and S. P. Jackson, CDK targets Sae2 to control DNA-end resection and homologous recombination, Nature, vol.24, issue.7213, pp.689-692, 2008.
DOI : 10.1128/MCB.16.9.4673

URL : http://europepmc.org/articles/pmc2635538?pdf=render

P. Huertas and S. P. Jackson, Human CtIP Mediates Cell Cycle Control of DNA End Resection and Double Strand Break Repair, Journal of Biological Chemistry, vol.273, issue.14, pp.9558-9565, 2009.
DOI : 10.1074/jbc.M710245200

M. H. Yun and K. Hiom, CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle, Nature, vol.455, issue.7245, pp.460-463, 2009.
DOI : 10.1038/nature07955

J. Matos, M. G. Blanco, S. Maslen, J. M. Skehel, and S. C. West, Regulatory Control of the Resolution of DNA Recombination Intermediates during Meiosis and Mitosis, Cell, vol.147, issue.1, pp.158-172, 2011.
DOI : 10.1016/j.cell.2011.08.032

M. Gallo-fernández, I. Saugar, M. Á. Ortiz-bazán, M. V. Vázquez, and J. A. Tercero, Cell cycle-dependent regulation of the nuclease activity of Mus81???Eme1/Mms4, Nucleic Acids Research, vol.11, issue.17, pp.8325-8335, 2012.
DOI : 10.1038/nrm2858

B. Szakal and D. Branzei, Premature Cdk1/Cdc5/Mus81 pathway activation induces aberrant replication and deleterious crossover, The EMBO Journal, vol.157, issue.8, pp.1155-1167
DOI : 10.1038/nature02253

URL : http://emboj.embopress.org/content/embojnl/32/8/1155.full.pdf

M. Clerici, D. Mantiero, G. Lucchini, and M. P. Longhese, The Saccharomyces cerevisiae Sae2 Protein Promotes Resection and Bridging of Double Strand Break Ends, Journal of Biological Chemistry, vol.5, issue.46, pp.38631-38638, 2005.
DOI : 10.1038/nsmb928

L. N. Princz, P. Wild, J. Bittmann, F. J. Aguado, M. G. Blanco et al., Dbf4???dependent kinase and the Rtt107 scaffold promote Mus81???Mms4 resolvase activation during mitosis, The EMBO Journal, vol.36, issue.5, pp.664-678
DOI : 10.15252/embj.201694831