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We discuss the generation and propagation of nondiffracting twisted pulses at microwaves, obtained through
polychromatic spectral superposition of higher-order Bessel beams. The inherent vectorial structure of
Maxwell’s equations has been considered to generalize the nondiffracting solution of the scalar wave equation
with azimuthal phase variation. Since a wide frequency bandwidth is necessary to synthesize time-limited
pulses, the non-negligible wavenumber frequency dispersion, which commonly affects propagation in the mi-
crowave range, has been taken into account. To this purpose a higher-order Bessel beam is generated by
enforcing an inward cylindrical traveling-wave distribution over a finite aperture. We present and discuss the
main aspects of the generation of twisted pulses in the microwave range, showing the promising possibility to
carry orbital angular momentum through highly-focused X-shaped pulses up to the nondiffractive range.

PACS numbers: 63.20.Pw, 84.40.Ba, 41.20.Jb, 41.20.-q, 84.40.-x

The exponential growth of high-demanding technolo-
gies for microwave and millimeter-wave applications such
as high data-rate communications, wireless power trans-
fer, near-field probing, medical imaging, just to mention a
few, has recently pushed researchers towards the recog-
nition of novel challenging issues from the electromag-
netic viewpoint: the generation of localized beams1,2 and
pulses3, as well as the generation of vortex beams4 and
pulses carrying orbital angular momentum (OAM)5.

As is known, localized beams are nondiffractive
monochromatic solutions of the scalar wave equation,
whose most-known representatives are the Bessel beams;
as a consequence, they are not subject to transverse
spreading, motivating the growing interest in their ex-
perimental characterization. Despite they were theoreti-
cally predicted for the first time in the 40s6, Bessel beams
have been experimentally generated in optics only at the
end of the 80s7, whereas realizations at lower frequencies
appeared only in the 90s by means of axicons8,9 and sev-
eral years later by means of other techniques10–13. This
temporary lack was mainly due to the fact that ideal
Bessel beams are endowed by infinite energy, thus they
require infinite radiating apertures14 to be generated.
However, the pioneering work of Durnin1,7 revealed that
such beams can still be generated by truncated apertures,
although their nondiffractive behavior is limited to a cer-
tain distance, known as depth of field or nondiffractive
range (NDR) (see Fig. 1).

Nondiffracting Bessel beams can profitably be used as
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FIG. 1. Circular aperture over the xy plane for launching
localized waves at microwaves. Their section slowly increases
beyond the nondiffractive range due to the limited spatio-
temporal dispersion of the pulse. A transverse reference plane
at z0 = zNDR/2 is defined to observe the pulse propagation.

building blocks for the synthesis of polychromatic so-
lutions of Helmholtz equation. Among them, localized
pulses2,15 undoubtedly gained increasing importance be-
cause of their remarkable properties of spatial and tempo-
ral confinement. It is worth noting that in the literature
such solutions are also referred as focus wave modes16,17,
splash pulses18, slingshot pulses19, undistorted progres-
sive pulses20, as well as complex source wave-fields21,22,
although they represent only different classes of the wider
family of localized waves; a useful and clarifying com-
parative table is reported in Ref. 23. Such localized
pulses were theoretically predicted at the beginning of
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the 80s16, but their experimental realizations (specifi-
cally, a class of them widely known as X-waves) appeared
only in the 90s in acoustics3 and optics24. However,
there is still no experimental evidence of such X-waves
in the microwave range where the wavenumber frequency
dispersion25 severely affects their propagation. This is es-
pecially true when a considerable frequency range is used
to synthesize a highly-focused pulse (i.e., a pulse whose
main spot is strongly confined along both the longitudi-
nal and the transverse direction with respect to the axis
of propagation). Interestingly, a recent analysis25 has
shown that a class of wideband antennas, namely the ra-
dial line slot arrays (RLSA) (see Refs. 26 and 27 for a
description of the structure), are able to generate highly-
focused localized pulses, provided that certain conditions
regarding the wideband capability, the size of the aper-
ture, and the wavenumber dispersion are fulfilled.

However, most of the current literature considers the
generation of X-waves as superpositions of zeroth-order
Bessel beams, thus neglecting the possibility to generate
polychromatic higher-order beams (also known as higher-
order X-waves2) that intrinsically carry orbital angular
momentum (OAM). Such a feature is of particular inter-
est in different areas of applied physics28, especially in
the context of optical trapping and micro-manipulation
of multiple particles29–32.

The main results regarding the generation of twisted
localized pulses (i.e., higher-order localized pulses) have
hitherto been achieved at optical frequencies5,14, whereas
realizations and even theoretical discussions at mi-
crowaves and millimeter waves are still lacking. In this
Letter, following the recent investigations about the com-
bination of OAM and X-waves in optics5, we investigate
the possibility to generate higher-order nondiffracting
pulses at microwaves. In particular, we discuss the possi-
bility to produce limited-diffraction twisted X-waves able
to carry OAM (here synthetically referred as XOAMs) at
microwaves through the aperture field potentially sup-
ported by planar antennas (e.g., RLSA antennas). Nu-
merical results corroborate the proposed analysis.

A vectorial formulation for higher-order Bessel beams
is adopted in the following. A time dependence of the
kind ejωt is assumed and suppressed. Without loss of
generality, a transverse magnetic field with respect to the
longitudinal direction (TMz) is considered (see Fig. 1), so
that in a cylindrical reference frame (ρ, φ, z), the electric
field components can be expressed as

Ez(ρ, φ, z) = E0Jn(kρρ)e−jnφe−jkzz, (1)

Eρ(ρ, φ, z) = −j kz
kρ
E0J

′
n(kρρ)e−jnφe−jkzz, (2)

Eφ(ρ, φ, z) = −nkz
k2
ρ

E0
Jn(kρρ)

ρ
e−jnφe−jkzz, (3)

where Jn(·) is the n-th order Bessel function of
first kind and J ′n(·) the first-order derivative; kρ and

kz =
√
k2

0 − k2
ρ are the radial and longitudinal wavenum-

bers, respectively. The evaluation of (1)-(3) at z = 0
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FIG. 2. XOAM wave: Ez radiated over a transverse plane
(z0 = 30 cm) at the carrier frequency f = 12.5 GHz. (a)
normalized amplitude and (b) phase distribution.

(i.e., on the antenna-aperture plane) gives the equiva-
lent tangential electric field distribution to be synthe-
sized. Such a standing-wave distribution is inherently
narrow-band10, whilst the generation of efficiently con-
fined localized pulses requires wideband capabilities, as
discussed in detail in Ref. 25. However, it has recently
been demonstrated27 that an inward traveling-wave aper-
ture distribution can generate a Bessel beam in a bicon-
ical region close to the axis of symmetry of the aper-
ture. Hence, in order to design a wideband launcher, we
synthesize an inward cylindrical traveling-wave aperture
distribution for the tangential electric field by replacing

the J ′n, Jn functions in Eqs. (2)-(3) with the H
(1)′

n , H
(1)
n ,

respectively, hence obtaining

Eρ(ρ, φ, z = 0) = −j kz
kρ
E0H

(1)′

n (kρρ)e−jnφ,

Eφ(ρ, φ, z = 0) = −nkz
k2
ρ

E0
H

(1)
n (kρρ)

ρ
e−jnφ.

(4)

Note that Hankel functions are singular along the z-axis
(i.e., ρ = 0), thus they do not satisfy the homogeneous
wave equation. The capability of such inward traveling
wave distributions to generate a high-order nondiffract-
ing beam has been demonstrated and discussed in detail
in Ref. 33 for a monochromatic Bessel beam; for brevity,
the results are not reported here, but numerical and ex-
perimental validations of such an assumption for n = 0
can be found in Refs. 27, 34.

As for the case of zeroth-order Bessel beams27, the un-
avoidable aperture truncation limits the nondiffracting
behavior up to a distance zNDR = ρa cot θ(ω), ρa be-
ing the aperture radius and θ(ω) = arctan[kz(ω)/kρ(ω)]
the axicon angle (see Fig. 1). Note that the frequency
dependence of the axicon angle results from the non-
negligible wavenumber dispersion which typically affects
microwave launchers35.We restrict here our attention to
the case of n = 1 and enforce the inward transverse elec-
tric field Et = Eρûρ + Eφûφ given by Eq. (4) over a
finite aperture having a radius ρa = 25 cm ' 10λ0,
with a radial wavenumber kρ = 0.4k0 at the operating
frequency f0 = 12.5 GHz. The electromagnetic field
Erad = Erad

ρ ûρ +Erad
φ ûφ +Erad

z ûz radiated by this aper-
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FIG. 3. XOAM field amplitude in the azimuthal xz (φ = 0)
plane. Comparison between (a)-(b) nondispersive and (c)-(d)
dispersive case. The intensity of the vectorial electric field |e|
has been reported for two time instants: (a), (c) t1 = 0.8 ns
and (b), (d) t2 = 2.4 ns. Note that t1 and t2 correspond to
the time instants for which the nondispersive pulse would have
traveled a distance equal to 1

2
zNDR and 3

2
zNDR, respectively

(Multimedia view). Note that zNDR = 57.3 cm

.

ture has been obtained by taking advantage of Huygens’
principle6. In particular, the equivalent source distribu-
tion, i.e., the tangential aperture field at z = 0 given by
Eq. (4), is evaluated and numerically integrated through
the standard approach involving the scalar free-space
Green’s function35,36. It is worth noting that such an
aperture field can be synthesized by means of microwave
radiators such as RLSA antennas27,33.

In Fig. 2(a) and (b), amplitude and phase of the re-
sulting monochromatic nondiffracting Bessel beam have
been reported for the longitudinal component. As ex-
pected a vortex beam is generated, i.e., a higher-order
(n = 1) Bessel beam.

Once the monochromatic higher-order Bessel beams
are generated, a twisted X-wave can be obtained by
superposing continuously monochromatic Bessel beams
over a certain frequency range. This is accomplished by
numerically evaluating the inverse Fourier transform of
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FIG. 4. XOAM time-domain normalized distribution on the
xz (φ = 0) plane of the electric-field component ez inside the
nondiffractive range for two time instants: (a) t1 = 0.8 ns,
(b) t2 =1.2 ns.

the radiated beams Erad
z as follows

ez(ρ, φ, z; t) =

∫ ∞
−∞

F (ω)Erad
z (ρ, φ, z;ω)ejωtdω, (5)

being F (ω) an arbitrary frequency spectrum.
In a first approximation, the cone dispersion37, i.e.,

the frequency dependence of the axicon angle is usually
neglected (θ(ω) ' θ0), as corroborated by experiments in
optics or in acoustics24,38. As a consequence, the normal-
ized wavenumbers kρ/k0 = sin θ0 and kz/k0 = cos θ0 are
usually assumed to be constant. However, when Erad

z is
generated at microwaves over a considerable fractional
bandwidth, a nonlinear dispersion of both kρ/k0 and
kz/k0 must be taken into account for a rigorous deriva-
tion of the pulse15,37. In particular, as already done in
Ref. 25, we consider here a second-order Taylor expan-
sion of the radial wavenumber around the operating an-
gular frequency ω0 as follows

kρ(ω) = kρ(ω0)+k′ρ(ω0)(ω−ω0)+
1

2
k′′ρ (ω0)(ω−ω0)2. (6)

It is worth noting that the wavenumber dispersion is
not related to the anomalous dispersion of nonlinear me-
dia that has already been exploited for supporting X-
waves37,39–41: here, it is an undesirable phenomenon that
has to be taken into account for a realistic description of
the spatio-temporal spreading of the field radiated by
the aperture. Its impact on the pulse propagation and
broadening is discussed in the following.

By considering a uniform frequency spectrum
F (ω) = 1 with ω ∈ [ω0 − ∆ω/2, ω0 + ∆ω/2] and 0
elsewhere, being ω0 = 2πf0 and ∆ω the bandwidth, the
time-domain pulse representation is given by retaining
the real part of the positive spectral content of (5),
namely ez(ρ, φ, z, t) = < [e+

z (ρ, φ, z, t)], being e+
z (·) the

analytic signal. This last expression correctly describes
a nondiffracting pulse in the frame of a scalar theory.
More generally, the radiated electric field Erad leads to
the vectorial expression of the localized electric pulse
e(ρ, φ, z; t) = eρûρ + eφûφ + ezûz as follows

e(ρ, φ, z; t) = <
[∫

∆ω

Erad(ρ, φ, z;ω)ejωtdω

]
. (7)
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FIG. 5. XOAM cylindrical electric-field components at
t1 = 0.8 ns (a), (c), (e), and at t2 = 1.2 ns (b), (d), (f). The
transverse plane z0 = zNDR/2 = 28.65 cm is fixed and time
evolution is observed (Multimedia view).

Let us stress that the components of e(ρ, φ, z; t) are still
spectral superpositions of Bessel beams, as can be in-
ferred from Eqs. (4). Hence, limited-diffraction pulses
are expected to be generated for each component of the
electric field. This is corroborated by the numerical re-
sults discussed in the following. Note that, for the spec-
tral superposition, a fractional bandwidth ∆ω/ω0 = 0.2
(∆f = 250 MHz) has been assumed according to the
potential wideband capabilities of a RLSA structure42.
Within the fractional bandwidth, it has been shown25

that kρ(ω0) = ω0
√
εr/c, k

′
ρ(ω0) ' (0.2 − √εr)/c and

k′′ρ (ω0) ' 0, where εr is the relative permittivity of the
dielectric filling the RLSA and c the light velocity in vac-
uum.

To assess the effect of the wavenumber dispersion and
the diffraction limit, in Fig. 3 the normalized amplitude
of the electric field intensity of the pulse |e(ρ, φ, z, t)| of
the XOAM has been reported at two time instants t1 and
t2 (see the caption for the relevant details) in both the
nondispersive (see Figs. 3(a) and (b)) and dispersive case

(see Figs. 3(c) and (d)). (The whole time evolution of the
dispersive pulse is available online (Multimedia view)).
As is clearly visible when dispersion is taken into account,
the group velocity is reduced (the distance covered by the
pulse is shorter). In addition, the spot size is slightly
widened along the transverse direction (see Figs. 3(c)
and (d)) without compromising the spatio-temporal lo-
calization of the pulse as long as it has not reached the
nondiffractive distance (zNDR = 57.3 cm). Conversely,
when the pulse is propagating beyond the nondiffrac-
tive distance, the twisted pulse is gradually spreading
either if the dispersion is (see Fig. 3(d)), or is not taken
into account (see Fig. 3(b)). In particular, the spot size
progressively grows up and the intensity of the central
spot abruptly vanishes. Note that similar results have
been obtained for zeroth-order X-waves in Ref. 25. As
a consequence, the nondiffractive range also represents
the distance for which the OAM is effectively carried by
the pulse. In Fig. 4 the longitudinal component of the
electric field is reported at the two time instants t1 and
t2 within the nondiffractive range.

Numerical results for the electric field components of
the pulse on a transverse plane have been reported in
Fig. 5, where their spatial distributions have been evalu-
ated at the reference plane z = zNDR/2 = 28.65 cm (see
Fig. 1), again for two distinct time instants. Also for this
case, the whole time evolution of the dispersive pulse is
available online (Multimedia view). The peculiar twisted
(i.e., rotating) behavior as well as its nondiffractive na-
ture are visible. The pulse crosses the reference plane
around t0 = 1 ns and gradually disappears: it is not yet
practically visible at t1 = 0.8 ns, whereas it is still cross-
ing the reference plane at t2 = 1.2 ns, after that it will be
no longer visible. The pulse propagation is quite regular
up to the nondiffractive range before the reported time
instants (as can be seen in the Multimedia view).

In conclusion, the generation of a monochromatic
higher-order Bessel beam carrying OAM has been con-
sidered in order to investigate the possibility to gen-
erate twisted electromagnetic limited-diffraction pulses
at microwaves. The dispersion and radiation properties
of RLSA structures have been evaluated for the practi-
cal realization of nondiffracting pulses carrying OAM at
microwaves. Furthermore, two major issues have been
taken into account: i) the generation of higher-order
Bessel beams in a wide frequency band and ii) the typi-
cal wavenumber dispersion of microwave radiators. The
former is obtained by enforcing a traveling-wave rather
than a resonant standing-wave illumination, and moti-
vates the use of a RLSA27,42; the latter follows from a
realistic description of the RLSA frequency behavior25.
However, the proposed analysis is general and can be ap-
plied to other kinds of microwave radiators characterized
by different wavenumber dispersions.

Remarkably, the time-domain analysis has corrobo-
rated the attractive features of such configurations, not
only for the generation of nondiffracting vortex beams,
but also for the generation of nondiffracting twisted



5

pulses. As expected, numerical results revealed that, dur-
ing the propagation, the wavenumber dispersion affects
the confinement of the rotating pulse without compromis-
ing anyway the limited-diffracting behavior of the origi-
nal solution up to the nondiffractive distance. This ev-
idence opens interesting scenarios for twisted pulse gen-
eration at microwaves, with applications in wireless com-
munications, wireless power transfer, buried-targets de-
tection, and medical imaging.
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