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Abstract: In this paper, we propose an exact model-based method for near-field sources localization
with a bistatic multiple input, multiple output (MIMO) radar system, and compare it with an
approximated model-based method. The aim of this paper is to propose an efficient way to use
the exact model of the received signals of near-field sources in order to eliminate the systematic
error introduced by the use of approximated model in most existing near-field sources localization
techniques. The proposed method uses parallel factor (PARAFAC) decomposition to deal with the
exact model. Thanks to the exact model, the proposed method has better precision and resolution
than the compared approximated model-based method. The simulation results show the performance
of the proposed method.

Keywords: near-field sources localization; bistatic MIMO system; PARAFAC

1. Introduction

Sources localization has been an important field of research for several decades. It is widely used in
radar, underwater sources localization, acoustics, medicine, robotics, etc. The sources can be classified
as near and far fields. Because of the wide range of applications, most of the research works [1–5] are
dedicated to far-field sources localization. However, near-field sources localization has some
important applications, like airport security control, ground penetration radar, phonocardiography,
and many more.

Most of the existing near-field sources localization techniques [6–16] are based on an approximated
model. In practice, a near-field point source has a spherical wavefront [6], which implies a nonlinear
model. The wavefront of a near-field source is usually approximated as quadric (quadratic surface)
to reduce the complexity of the model [6,9]. However, the use of this approximation results in a
systematic error, which inevitably deteriorates the accuracy of the estimation. The systematic error is
like an offset added to the actual source position, which increases when the target gets close to the
antenna array [6].

In recent years, multiple input, multiple output (MIMO) radar has drawn a lot of attention.
The advantages and limitations of MIMO radar have been well summarized in [2,3]. Based on the
placement and configuration of the antennas, MIMO radar systems can broadly be classified as
distributed or colocated. MIMO radar with colocated antennas can further be classified as monostatic,
bistatic, and multistatic. In a bistatic MIMO radar system, the transmitting and receiving arrays are
separated by a large distance, but the antennas in each array are kept close to each other (colocated) as
compared to the distances between targets and the arrays. When the same array is used as transmitter
and receiver, the system is monostatic. The directions of arrival and departure are different in the case
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of a bistatic MIMO system, but are equal for a monostatic MIMO radar system. If the distance between
the transmitting and receiving arrays of a bistatic MIMO system is negligible compared to the range
of targets, it can be considered as a pseudo-monostatic MIMO system. The work by Guo et al. [10]
provides a subspace-based near-field sources localization method for a pseudo-monostatic MIMO
radar system. A near-field sources localization method based on an approximated model with a
bistatic MIMO system was proposed in [15]. Recently, in [17], a method based on the exact model
of the received signal has been proposed to locate near-field targets using a bistatic MIMO system
composed of linearly-aligned transmitting and receiving arrays. This paper is an improvement and an
extension of the method in [17]. The major differences between the two are:

1. The method in [17] is specific to the linearly-aligned transmitting and receiving arrays, whereas
this paper deals with any configuration for the transmitting and receiving uniform linear arrays
(ULAs) (3D situation).

2. Due to the linearly-aligned transmitting and receiving arrays, the cost function in [17] has only
two variables. However, the generalized 3D configuration in this paper results in a three-variable
cost function which is much more difficult to deal with. Thus, in this paper, we propose a better
and more efficient approach based on an overdetermined system of linear equations.

In [15], four parameters—namely, the angle of arrival, the angle of departure of a target, and the
distances (ranges) from the target to the transmitting and receiving arrays—are used to localize the
target, but there are some redundancies because three coordinates are sufficient to define the position
of a target. Therefore, in this paper, we use Cartesian coordinates to formulate the signal model and
express the localization error.

There are many existing methods to localize sources from an array of sensors, such as Capon’s
method, multiple signal classification (MUSIC), estimation of signal parameter via rotational invariance
techniques (ESPRIT), propagator method, and tensor decomposition method [1,5]. Among the methods
listed above, the tensor decomposition method directly estimates the whole directional matrix instead
of the directional parameters [18], which facilitates the estimation of the directional parameters from
a nonlinear model such as the exact model in near-field situation. Consequently, the proposed exact
model-based method uses the tensor decomposition. Tensor-based models and techniques are well
adapted to MIMO radar because tensors allow coping with large systems (three or more dimensions).
The received signal in the case of a bistatic MIMO system can be organized as a three-way tensor.
Three-way tensors have attracted a lot of attention because they are the simplest form of tensor after
a matrix and can be decomposed into unique factors, contrary to a matrix. Kruskal [19] provides a
detailed study of the rank and uniqueness in the decomposition of a three-way tensor. The tensor
decomposition has already been used for multiple far-field sources localization with bistatic MIMO
radar [5].

There exist many tensor decomposition techniques, such as Tucker, parallel factor analysis
(PARAFAC), and block component decomposition [20]. PARAFAC is often used in array signal
processing thanks to its uniqueness in the decomposition of tensors under some mild conditions [18].
Thus, in this paper, we select PARAFAC to decompose the three-way tensor of the received signal to
obtain the directional matrices of arrival and departure. From the existing work on the application of
PARAFAC to the localization of targets, we can observe that it is mainly proposed for far-field target
localization. In this paper, we extend it to the near-field situation. Once the directional matrices are
estimated, an optimization method can be used to obtain the directional parameters.

To summarize, this paper focuses on the use of an exact model of the received signals of near-field
sources to get better performance than the existing approximated model-based techniques for near-field
sources localization with a bistatic MIMO system. Due to the nonlinear nature of the exact model, the
PARAFAC decomposition is used, and an optimization technique is developed to efficiently solve
this problem.

The remainder of the paper is organized as follows. In Section 2, a detailed signal model is
constructed for a bistatic MIMO radar system based on the spherical wavefront of an incoming wave
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by taking the exact propagation model in the near-field situation into account. Section 3 provides a
short presentation of the method proposed in [15]. In Section 4, the proposed method is described.
Finally, some simulation results are presented to compare the performance of the proposed method
with the method presented in [15], followed by some discussion and conclusions.

Notations

In the following, a bold lower case character (e.g., a) represents a vector, whereas a bold upper case
character (e.g., A) denotes a matrix. A tensor is denoted by a bold upper case calligraphic font (e.g., Y ).
[•]T , [•]+, and ‖•‖F represent, respectively, the transpose, left pseudo-inverse, and Frobenius norm
of a matrix or vector. � is the Khatri–Rao (column-wise Kronecker) product operator. The cardinal
number of a set is represented by c(•). ∠(•) stands for the principal value of the angle (or argument)
of a complex number. D{a} represents the diagonal matrix with all the components of vector a as its
diagonal elements. E{•} is the expected value.

2. Signal Model

Let P be the number of narrow-band stationary point sources in the near-field region of a bistatic
MIMO system with ULAs. In the following, M and N represent, respectively, the number of antennas
in the transmitting and receiving arrays of the bistatic MIMO system.

For such a bistatic MIMO system, the L samples of the received matched signal in the presence of
P stationary point sources can be written as [4]

YM = (Ae � Ar) ST + WM (1)

where Ae ∈ CM×P and Ar ∈ CN×P contain the directional vectors of departure and arrival, respectively,
S ∈ CL×P is the matrix of the complex-valued reflection coefficients of targets, and WM ∈ CMN×L

is an additive noise matrix composed of spatially- and temporally-independent elements, and each
element is a zero mean Gaussian random variable with variance σ2. The reflection coefficients are
assumed to be different for each target and randomly changing with each sample. In other words, we
consider a Swerling model II case, which makes S a full rank matrix [21]. The pth columns of Ae and
Ar—denoted by aep and arp , respectively—are given by

aep =
[

ae(1−mo , p) , · · · , 1, · · · , ae(M−mo , p)

]T
(2)

and

arp =
[

ar(p, 1−no)
, · · · , 1, · · · , ar(p, N−no)

]T
(3)

where mo and no are the indexes of the reference elements of the transmitting and receiving arrays,

respectively, ae(m, p) = e
−j 2 π δe(m, p)

/λ
, and ar(p, n) = e

−j 2 π δr(p, n)
/λ

. m ∈ {1−mo, 2−mo, · · · , M−mo}
and n ∈ {1 − no, 2 − no, · · · , N − no} are the relative indexes of the respective arrays. λ is the
wavelength of the carrier. δe(m, p) is the difference between the distance traveled by the transmitted
signal from the mth transmitting antenna to the pth target and the distance traveled by the transmitted
signal from the 0th transmitting antenna to the pth target, which can be expressed as

δe(m, p) =

√
ρ2

ep + m2 d2
e − 2 m de ρep cos

(
θep

)
− ρep (4)

where ρep and θep are respectively the range and angle of departure of the pth target with respect to the
reference transmitting antenna indexed by mo, and de is the inter-element spacing in the transmitting
array. Similarly, δr(p, n) is the difference between the distance traveled by the reflected signal from the
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pth target to the nth receiving antenna and the distance traveled by the reflected signal from the pth
target to the 0th receiving antenna, which can be expressed as

δr(p, n) =

√
ρ2

rp + n2 d2
r − 2 n dr ρrp cos

(
θrp

)
− ρrp (5)

where ρrp and θrp are, respectively, the range and angle of arrival of the pth target with respect to the
reference receiving antenna indexed by no and dr is the inter-element spacing in the receiving array [6].

YM in Equation (1) can be considered as a block matrix, YM =
[
Y̆T

1−mo
, Y̆T

2−mo
, · · · , Y̆T

M−mo

]T
.

The mth sub-matrix of YM (i.e., Y̆m ∈ CN×L) can be expressed as

Y̆m = ArDmST + W̆m (6)

where Dm = D
{[

ae(m, 1) , ae(m, 2) , · · · , ae(m, P)

]}
and W̆m is the corresponding noise sub-matrix.

3. Approximated Model-Based Method Proposed in [15]

Most of the existing near-field sources localization techniques [6–9,11,14] use an approximated
model, and ULA is often used in the approximated model-based methods. The approximated
path differences—which are the second-order Taylor approximations of Equations (4) and (5)—can
respectively be written as [6]

δ̃e(m, p) = −m de cos
(

θep

)
+

m2 d2
e

2 ρep

sin2
(

θep

)
(7)

and

δ̃r(p, n) = −n dr cos
(

θrp

)
+

n2 d2
r

2 ρrp

sin2
(

θrp

)
. (8)

In [15], a subspace-based method is used to estimate four parameters: two ranges (ρep and ρrp )
and two directional angles (θep and θrp ) of a near-field target by using a bistatic MIMO system with
inter-element spacing of λ/4 in each ULA. M ∈ {2 µ + 1 : µ ∈ N, µ > 1}, N ∈ {2 µ̆ + 1 : µ̆ ∈ N},
mo = (M + 1)/2, no = (N + 1)/2, de ≤ λ/4, and dr ≤ λ/4 are the necessary conditions of [15].

In an approximated model-based method like [15], Ae and Ar are assumed to be constructed by
δ̃e(m, p) and δ̃r(p, n) , respectively. Therefore, in this case, Dm in Equation (6) can be expressed as

Dm = D
{[

ej(m ωe1−m2 φe1), ej(m ωe2−m2 φe2), · · · , ej(m ωeP−m2 φeP)
]}

(9)

where ωep = 2 π de cos(θep)/λ and φep = π d2
e sin2(θep)/(λ ρep). In [15], four cross-covariance matrices

between Y̆m for m ∈ {−2,−1, 1, 2} and Y̆0 are constructed. The eigenvalues of R−2 R+
−1 and R2 R+

1 are
used to get ρep and θep , and their eigenvectors are used to obtain ρrp and θrp , where Rm = E{Y̆m Y̆ H

0 }.
More details can be found in [15].

4. Proposed Exact Model-Based Position Estimation Method

Every element of YM in Equation (1) is associated with three parameters related, respectively,
to the receiving antenna, transmitting antenna, and time sample. Therefore, YM can be rearranged like
a three-way tensor Y ∈ CN×M×L, as shown in Figure 1. Creating a tensor out of lower dimensional
data is known as tensorization [20].
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Figure 1. Tensorization.

PARAFAC decomposition of tensor Y is used to get the estimates of Ar, Ae, and S matrices [5].
Tensor operations are usually performed in its equivalent matrix form [5,22,23]. The process of creating
a matrix out of a tensor is known as matricization [20]. Like YM , Y can be matricized into the following
two additional matrices

YL = (S� Ae) AT
r + WL (10)

and
YN = (Ar � S) AT

e + WN . (11)

According to the least squares principle, the following objective functions can be written from
Equations (1), (10) and (11)

Ŝ = arg min
S

{∥∥∥YM − (Ae � Ar) ST
∥∥∥

2

F

}
, (12)

Âr = arg min
Ar

{∥∥∥YL − (S� Ae) AT
r

∥∥∥
2

F

}
, (13)

and

Âe = arg min
Ae

{∥∥∥YN − (Ar � S) AT
e

∥∥∥
2

F

}
(14)

where Âr , Âe, and Ŝ denote the estimated values of Ar , Ae, and S respectively.
The trilinear alternating least squares (TALS) algorithm is a classical method to minimize the

above objective functions [5,22,23]. Least squares estimates of Equations (12)–(14) are given by

Ŝ =
[
(Ae � Ar)

+ YM

]T
, (15)

Âr =
[
(S� Ae)

+ YL

]T
, (16)

and
Âe =

[
(Ar � S)+ YN

]T
. (17)
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In the TALS algorithm, Equations (15)–(17) are alternatively updated with the new values of
Âr, Âe, and Ŝ until a stopping criteria is met. ‖YM − (Ae � Ar) ST

∥∥2
F < εtol is often used as the

stopping condition, where εtol is the tolerance. In practice, the algorithm given in [24] is used for
PARAFAC decomposition, which uses compression, line search, normalization, etc. to accelerate the
TALS method.

According to [19], the matrices obtained by PARAFAC decomposition of a three-way tensor
are scaled and permuted. The permutation has no impact because the matrices’ columns are paired.
However, in the proposed method, the scaling factor must be removed by dividing all the elements of
the directional vectors with their corresponding reference elements.

To define the Cartesian coordinates of a target, let us assume a general configuration of bistatic
MIMO system as shown in Figure 2. In the case of a ULA, the unit vector along the array and the
position vector of the reference antenna of the corresponding array are sufficient to obtain the position
vectors of the remaining antennas of that array. In the figure, eo and ro are the position vectors of the
reference transmitting and receiving antennas, respectively, with respect to the origin of the Cartesian
coordinate system, and dce and dcr are the unit vectors along the transmitting and receiving arrays,
respectively. tp = [xtp , ytp , ztp ]

T represents the position vector of the pth target. In 3D space, the range
and directional angle of a target with respect to a linear array make a circle related to the base of a cone
with the range as its slant height and the directional angle as its half angle. In the bistatic case, we have
two such circles (shown in Figure 2). The target is located at the intersection of these two circles. In the
figure, νep and νrp are unit vectors on the planes of the respective circles. The parametric equations of
the circles can be written as

ψep(ϕe) = ρep sin
(

θep

) [
cos (ϕe) νep + sin (ϕe) dce × νep

]
+ ρep cos

(
θep

)
dce + eo (18)

and
ψrp(ϕr) = ρrp sin

(
θrp

) [
cos (ϕr) νrp + sin (ϕr) dcr × νrp

]
+ ρrp cos

(
θrp

)
dcr + ro (19)

where × denotes the cross-product operation between two vectors; ψep(ϕe) and ψrp(ϕr) are the
position vectors of a point on the respective circles at ϕe and ϕr, respectively. The equation parameters
ϕe and ϕr independently vary from 0 to 2π rad to completely sweep the respective circles.

The ranges and directional angles can be expressed in terms of the Cartesian coordinates
as ρep =

∥∥tp − eo
∥∥

F, ρrp =
∥∥tp − ro

∥∥
F, θep = arccos

[(
tp − eo

)T dce /ρep

]
, and θrp =

arccos
[(

tp − ro
)T dcr /ρrp

]
. Thus, according to Equations (2)–(5), aep and arp can respectively be

determined by tp as

ae(m, p) = e
−j 2 π

(√
‖tp−eo‖2

F+m2 d2
e−2 m de(tp−eo)

T
dce−‖tp−eo‖F

)
/λ

(20)

and

ar(p, n) = e
−j 2 π

(√
‖tp−ro‖2

F+n2 d2
r−2 n dr(tp−ro)

T
dcr−‖tp−ro‖F

)
/λ

. (21)

Then, a direct approach to estimate tp could be the minimization of the following cost function

t̂p = arg min
tp

{∥∥∥âep /âe(0, p) − aep

∥∥∥
2

F
+
∥∥∥ârp /âr(p, 0) − arp

∥∥∥
2

F

}
(22)

where âep and ârp are the estimated directional vectors obtained from the PARAFAC decomposition,
and âe(0, p) and âr(p, 0) are their respective reference elements used here to remove the scaling factor in
the decomposition of the received signal tensor.
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Figure 2. General configuration of a bistatic multiple input, multiple output (MIMO) radar system
with linear arrays.

Even though a near-field region occupies a finite space, minimizing Equation (22) by using grid
search or Newton’s method is computationally expensive. Therefore, we choose an indirect method in
which we estimate the ranges and directional angles, followed by the estimation of the coordinates.

Rearranging Equations (4) and (5), we can obtain

2 m de ρep cos
(

θep

)
+ 2 δ̂e(m, p) ρep = m2 d2

e − δ̂2
e(m, p)

(23)

2 n dr ρrp cos
(

θrp

)
+ 2 δ̂r(p, n) ρrp = n2 d2

r − δ̂2
r(p, n)

(24)

where δ̂e(m, p) and δ̂r(p, n) are the estimated path differences which can be directly obtained from the
estimated directional vectors as follows

δ̂e(m, p) = −λ
[
U
{
∠
(

âe(m, p)

)}
− U

{
∠
(

âe(0, p)

)}]
/2π (25)

and
δ̂r(p, n) = −λ

[
U
{
∠
(

âr(p, n)

)}
− U

{
∠
(

âr(p, 0)

)}]
/2π (26)

where U {•} represents the unwrapped value of the argument [25]. Equations (25) and (26) can be
described as follows:

1. Get the directional vectors âep and ârp from the PARAFAC decomposition.
2. Extract the arguments of all the components of âep and ârp .
3. Unwrap the phase vectors obtained from Step 2.
4. Subtract the unwrapped phase corresponding to âe(0, p) and âr(p, 0) from all the components of the

unwrapped phase vector of âep and ârp , respectively.
5. Divide each component of the normalized phase vectors obtained from the above step by −2 π/λ

to get δ̂e(m, p) and δ̂r(p, n) .
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In practice, M ≥ 2 and N ≥ 2; therefore, Equations (23) and (24) can be considered as
an overdetermined system of linear equations in ρep cos

(
θep

)
and ρep and ρrp cos

(
θrp

)
and ρrp ,

respectively, which can be solved by the total least squares method [26]. Let [u1p , u2p , u3p ]
T be the

right-singular-vector associated with the smallest singular value of the following matrix formed by the
coefficients of Equation (23)




2 (1−mo) de 2 δ̂e(1−mo , p) (1−mo)2 d2
e − δ̂2

e(1−mo , p)

2 (2−mo) de 2 δ̂e(2−mo , p) (2−mo)2 d2
e − δ̂2

e(2−mo , p)
...

...
...

2 (M−mo) de 2 δ̂e(M−mo , p) (M−mo)2 d2
e − δ̂2

e(M−mo , p)




. (27)

The estimated range and angle of departure can respectively be computed by ρ̂ep = −u2p /u3p

and θ̂ep = arccos
(

u1p /u2p

)
. Similarly, let [v1p , v2p , v3p ]

T be the right-singular-vector associated with
the smallest singular value of the following matrix formed by the coefficients of Equation (24)




2 (1− no) dr 2 δ̂r(p, 1−no)
(1− no)2 d2

r − δ̂2
r(p, 1−no)

2 (2− no) dr 2 δ̂r(p, 2−no)
(2− no)2 d2

r − δ̂2
r(p, 2−no)

...
...

...
2 (N − no) dr 2 δ̂r(p, N−no)

(N − no)2 d2
r − δ̂2

r(p, N−no)




. (28)

The estimated range and angle of arrival can respectively be computed by ρ̂rp = −v2p /v3p and

θ̂rp = arccos
(

v1p /v2p

)
.

The estimated ranges and directional angles can be used in Equations (18) and (19) to construct
the parametric equations of the circles. As mentioned before, the required coordinates are at the
intersection of these circles. However, due to the estimation error and noise, the circles may not
intersect; thus, the following minimization problem can be solved:

(ϕ̂e, ϕ̂r) = arg min
(ϕe , ϕe)

{∥∥∥ψep(ϕe)−ψrp(ϕr)
∥∥∥

2

F

}
. (29)

A coarse solution of Equation (29) can be calculated by exhaustive grid search, and then it can be
finely tuned by Newton’s method. Solving Equation (29) is less complex than solving Equation (22).
Finally, the position vector of the pth target can be computed as t̂p = ψep(ϕ̂e), t̂p = ψrp(ϕ̂r), or the
average of these two position vectors.

Algorithm 1 provides a summary of the proposed method.

Algorithm 1 Algorithm of the proposed method.

1. Construct the three-way tensor Y from the received data.
2. Estimate Ae and Ar from Y using PARAFAC decomposition.
3. Use Equations (25) and (26) to obtain δ̂e(m, p) and δ̂r(p, n) from the estimated Ae and Ar , respectively.
4. Create the system of linear equations by substituting δ̂e(m, p) and δ̂r(p, n) in Equations (23) and (24),

respectively, for all the values of m and n for each target.
5. Separately solve each system of linear equations created in step 4 using the total least squares

technique to obtain ρ̂ep , θ̂ep , ρ̂rp , and θ̂rp .
6. Substitute the four estimated location parameters in Equations (18) and (19) to obtain the

parametric equations of the circles, and minimize (29) to estimate ϕ̂e and ϕ̂r.
7. Finally, substitute ϕ̂e and ϕ̂r along with ρ̂ep , θ̂ep , ρ̂rp , and θ̂rp in Equations (18) and (19) to get the

estimated coordinates t̂p of the pth target.
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5. Simulation Results

In the following simulations, the performance of the proposed method and the method in [15]
is compared, with M = 5, N = 9, mo = 3, no = 5, and de = dr = λ/4 to satisfy the necessary
requirements of [15]. Throughout the simulation, λ is used as the unit of length. The remaining
MIMO system configuration parameters are eo = [0.5λ, λ, 1.5λ]T , ro = [0.4λ,−0.3λ,−0.2λ]T ,
dce = [0.3420, 0.5000, −0.7956]T , and dcr = [0.8660, −0.1736, 0.4689]T , which are chosen randomly
such that there exists a significant near-field region shared by both ULAs.

According to the three estimated coordinates, the root mean square error (RMSE) associated with
the position estimation of the pth target is calculated as follows:

RMSEp =

√√√√ 1
K

K

∑
k=1

∥∥t̂p(k)− tp
∥∥2

F (30)

where K is the number of Monte Carlo iterations, t̂p(k) represents the estimated position at the kth
iteration, and tp is the true position of the pth target.

In Figure 3, we have compared the performance of the proposed method with the method
proposed in [15] with two targets at [λ, λ, λ]T and [2λ, 1.75λ, 1.5λ]T in the Fresnel region. The cost
Function (29) has also been applied to [15] to obtain the coordinates. In addition, we have also
drawn the Cramér–Rao lower bound (CRLB) in Figure 3, which can be obtained from the existing
works [4,13,27]. To keep mathematical analogy with RMSE, we combine the CRLB of the three
coordinates of the pth target as

CRLBp =
√

σ2
xp + σ2

yp + σ2
zp (31)

where σ2
xp , σ2

yp , and σ2
zp denote the CRLB of the corresponding coordinates belonging to the pth target.

Figure 3 shows that the proposed method has higher precision and much better performance
in terms of RMSE than that of the subspace and approximated model-based method in [15]. This
performance gain comes principally from the use of the exact near-field received signal model and
PARAFAC decomposition in the proposed technique.
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Figure 3. Root mean square error (RMSE) versus signal-to-noise ratio (SNR); de = dr = λ/4, K = 1000,
L = 100, M = 5, N = 9, and P = 2. CRLB: Cramér–Rao lower bound.
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The resolution capability of a method can be evaluated by the probability of the successful
detection P(ξ) of two closely-placed targets, which can be calculated as [12]:

P(ξ) = c
({

k :
∥∥t̂1(k)− t1

∥∥
F < ξ and

∥∥t̂2(k)− t2
∥∥

F < ξ
})

/K (32)

where k ∈ {1, 2, · · · , K} and ξ = ‖t1 − t2‖F /2 is the half of the distance between the two targets.
Figure 4 gives the probability of successful detection of two targets at different distances between
the targets, which shows that the proposed method has a much better resolution power than its
counterpart, even at the high signal-to-noise ratio (SNR) of 10 dB.
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Figure 4. Probability of successful detection versus distance between two targets at SNR = 10 dB;
de = dr = λ/4, K = 1000, L = 100, M = 5, N = 9, and P = 2.

6. Discussion

In Figure 3, we can observe a significant gap between the RMSE corresponding to the proposed
method and the method in [15]. The gain in performance of the proposed method comes from the
use of the PARAFAC decomposition and the exact model of the received near-field signals. At high
SNR, the method in [15] experiences a floor effect in terms of achievable RMSE performance, which
clearly shows the systematic bias introduced by the approximated model. This systematic error is not
discernible at low SNR because the major contribution to the estimation error comes from the noise.
This bias also explains the low successful detection probability of [15], as shown in Figure 4. Because
of the approximation, the location estimated by an approximated model-based method is shifted from
the true location, which makes P(ξ) small.

7. Conclusions

In this paper, we propose a novel technique for near-field sources localization with a bistatic
MIMO system. The principal originalities of this work are the use of the exact model and PARAFAC
decomposition for near-field sources localization. Thanks to the exact model of near-field sources, the
proposed method has high precision and resolution. The performance of the proposed method greatly
surpasses the high-resolution subspace-based method proposed in [15], which proves the importance
of an exact model-based method. The proposed method also has some additional advantages with
respect to the compared approximated model-based method: it works for the inter-element spacing of
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λ/2 without any ambiguity, M and N are not required to be odd, and any antenna can be used as the
reference point.
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Abbreviations

The following abbreviations are used in this manuscript:

CRLB Cramér–Rao Lower Bound
ESPRIT Estimation of Signal Parameter via Rotational Invariance Techniques
MIMO Multiple Input Multiple Output
MUSIC Multiple Signal Classification
PARAFAC Parallel Factor
RMSE Root Mean Square Error
SNR Signal-to-Noise Ratio
TALS Trilinear Alternating Least Squares
ULA Uniform Linear Array
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