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Abstract

When subjected to constrained deformation loadings, such as during an

indentation test, silica glass experiences complex deformation mechanisms

including densi�cation and volume-conservative shear plasticity. The den-10

si�cation mechanism may increase the density up to more than 21%. The

question of the mechanical behaviour of an already fully densi�ed glass sam-

ple naturally arises. This issue is one of the key points to address when one

tries to propose a constitutive model of pristine silica glass. Indeed, during

an indentation test, which is a popular test for this task, beneath the indenter15

tip, some regions might be fully densi�ed. What is their behaviour, after sat-

uration in densi�cation and during loading, is therefore an issue to address.

Moreover, this is a crucial point for exploring the transition from plasticity

to cracking, which is of paramount importance and a long-term objective for

predicting the lifetime of glass products subjected to contact loadings such as20

impact or scratching.

In this paper, a quantitative identi�cation of fully densi�ed silica mechan-

ical constitutive behaviour is made by using instrumented indentation testing

and �nite element analyses. The use of such an indirect method to assess the
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mechanical behaviour of this material comes from its brittleness behaviour in

unconstrained deformation modes usually employed in metals plasticity. It is

shown here that fully densi�ed silica behaves as a von Mises material (rate-

independent shear plasticity without strain-hardening) like some crystalline

metals. The yield strength and yield strains are, at the contrary, much higher5

than for alloys: respectively 6.5 GPa and 6.1 %. This mechanical modelling,

as well as the plastic parameters values found, are in excellent agreement

with very recent experimental and numerical simulations on silica glass and

silicate glasses.

The high value of the yield strain is found to explain unusual indentation10

features such as a unusual long range residual piling-up while sinking-in is

predicted during loading, as well as low values of the ratio hardness-to-yield

strength.

Keywords: Non-metallic glasses (silicates); Plasticity; Constitutive

modelling; Densi�cation; Nanoindentation.15

1. Introduction

Silica glass (SiO2) may be viewed as the archetype of a three dimensional

network glass former. It is a highly brittle material that breaks in bending

under few tens of MPa because of its extreme sensitivity to surface damage

[1, 2]. Yet, under constrained mechanical loadings such as hydrostatic tests20

or indentation, it can deform permanently without breaking or even cracking

[3, 4]. Under pure hydrostatic conditions, its density (respectively its vol-

ume) may increase permanently [5, 6, 7] by more than 20 % (respectively
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decrease by more than 16 %) [3, 8]. This has been related to some changes

in the intermediate range order, among which the decrease of intertetrahe-

dra angles [9], and is referred to as pressure-induced densi�cation (PID). It is

now recognised that during indentation, densi�cation occurs as well as vol-

ume conservative shear �ow [10]. These main mechanisms at stake have5

been observed separately and very recently properly modelled: PID as re-

called previously [11] and shear �ow by uniaxial compression experiments

[12, 13]. For the former mechanism (PID), the authors proposed a descrip-

tion of the densi�cation process with a threshold pressure for the onset of

densi�cation, an increase of densi�cation upon pressure, and another pres-10

sure threshold for the saturation in densi�cation. They also pointed out the

necessity to use a Finite Deformation framework and to account for the elas-

tic stiffening with densi�cation (for instance the bulk modulus will double)

[11]. As for the latter mechanism, the authors of Ref. [12, 13], using com-

pression tests on micropilars, showed that silica glass behaves in compression15

as a perfectly elasto-plastic material (without any strain hardening in shear)

with a compressive yield strength around 6-7 GPa. These two mechanisms

take place together during an indentation test [14, 15] so that their kinetics

must be related to a combination of driving forces (shear and pressure). Dif-

ferent authors have proposed such constitutive modellings that are successful20

in describing the mechanical response of the instrumented indentation test

(the force-displacement curve) [16, 17, 18, 19, 20]. Some of them were also

successful in observing densi�cation �elds beneath the residual imprint by

Raman spectroscopy [21, 18] or by a chemical dissolution technique [22].

However, a piece of this jigsaw puzzle is still missing: what does the be-25

haviour of the material become when the densi�cation is saturated to � 21%
3



ACCEPTED MANUSCRIPT

 
 
 
 

? In other words, what is the mechanical behaviour of fully densi�ed silica

glass? This issue is of paramount importance not only from a condensed-

matter physics point of view but also since the ultimate target of modelling

the mechanical response of glasses to surface damage is to describe the tran-

sition from plasticity to cracking and it is highly liable that these densi�ed or5

fully densi�ed zones play a major role in it.

This is the current objective of this paper. We will analyse instrumented

indentation tests, in terms of force-displacement curves and residual imprints,

to propose an adequate description of the mechanical behaviour of fully den-

si�ed silica glass under Vickers indentation.. The paper is organised as fol-10

lows. We will �rst describe how silica glass samples are densi�ed up to more

than 21%, how indentation tests are performed and how results are analysed.

The numerical procedures, using both two- and three-dimensional �nite el-

ement analyses of the Vickers indentation test, will be then described. After

presenting and analysing both experimental and numerical results, we will15

eventually challenge our �ndings in terms of mechanical modelling and ma-

terial properties to very recent experimental and simulation literature results.

2. Experimental and numerical methods

2.1. Material and experimental procedures

Silica glass (VitreosilTM, Saint-Gobain, France) specimens (0.6 mm in di-20

ameter and 2 mm in length) were densi�ed by means of an octahedral multi-

anvil apparatus using a Walker cell. A typical run consisted in raising the

load pressure of the main ram at a rate of 0.5 MPa/min of oil up to obtaining

a pressure of 25 GPa on the sample. After reaching the target pressure, the

specimens were maintained at high pressure for one hour and then slowly25
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unloaded. Density was measured with a better than 0.001 g/cm3 accuracy

by means of a density gradient method using two partially miscible liquids

(iodobenzene and methylene iodide). The density of the pristine samples

was 2.2 g/cm3. After unloading from the Walker cell, samples had a density

increased by 21.6 %. They are further referred to as fully densi�ed (FD).5

Further details may be found elsewhere [3].

Instrumented indentation tests (IIT) were carried out with a micro-indenter

testing device (Fischerscope H100 XYp, Fischer, Germany) at ambient condi-

tions (23�C and 55% relative humidity). It has a load resolution of 0.02 mN

and a depth resolution of 2 nm. The calibration of the instrument was done10

by using ISO-14577 standard on a reference block (BK7TM borosilicate glass).

The indenter tip is a Vickers diamond pyramid. IIT tests were carried out both

on a pristine silica sample (further referred to as PS, studied for sake of com-

parison) and on FD. A typical ’4-5-4’ loading sequence was used: 4 s to reach

the maximum force Pm, 5 s of holding time, and 4 s to unload the sample’s15

surface. They were force-controlled and the Pm values were 100 mN. The me-

chanical response of the indentation test is the force P vs. the displacement �

(counted positively). Due to the high reproducibility of the indentation test

on the glass surface, �ve indents per chosen maximum load were performed.

Unloading curves were analysed to extract an indentation modulus, M , and20

an indentation hardness, HIT, by Oliver and Pharr’s method [23].

Atomic force microscopy made it possible to record the three-dimensional

geometry of the residual indentation imprint after unloading. Images were

captured by using the contact mode of an AFM (Bruker Nanoscope V, Dimen-

sion 3100, Santa Barbara, CA) equipped with silicon nitride tips (DNP) with25

a nominal tip radius of the order of 20 nm and apical angle of 40°. The AFM
5
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tip being much sharper than the Vickers indenter it ensures that the residual

imprint shape is captured without AFM probe shape convolution effect. Fi-

nally, the piezo scanner was calibrated in X-Y-Z directions with a grid having

a 10 µm pitch (X-Y directions) of 200 nm deep squared holes (Z direction).

Regarding image post treatment, the size of the scanned areas containing5

an indentation imprint was large enough so that a suf�cient area, unaffected

by the indentation process, surrounds the imprint and may be used as a refer-

ence surface for post treatment. This surface of reference was extracted from

the raw image by using a disk-shaped mask centered on the imprint. It was

assumed that the surface of the tested samples, far from the indentation im-10

print, was �at (i.e. no tilt and no offset). Thus a linear �t was applied to this

data set, which was subsequently subtracted from the raw image. It is impor-

tant to note that removing a tilt on the whole data set does not modify the

three-dimensional shape of the residual imprint. Meyer’s hardness, H, was

also measured as the ratio Pm to the projected contact area, after unloading,15

on the residual imprints.

2.2. Numerical procedures

Finite element analyses (FEA) of the indentation process were performed

using both two (2D) and three dimensional (3D) models constituted of a sam-

ple and an indenter. The 3D mesh is generated from a coarser 2D mesh. The20

2D mesh is �rst described.

The sample’s mesh is divided into a core zone, beneath the indenter tip,

where the mesh is �ne, and a shell zone where the mesh is coarse far from the

contact. The core zone is itself divided into a square zone with a 32x32 (2D)

or 16x16 (3D) quadrangular structured mesh contained into an outer un-25
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structured zone made of quadrangular elements (32/16 again along the axis

z = 0). The shell zone is decomposed into a transition zone where the element

size is progressively increased and a outer zone, both with quadrangular el-

ements. All elements are linear and use full integration 1. The dimensions of

the mesh are chosen in order to minimise the effect of the far-�eld boundary5

conditions. This is made by using a suf�cient number of outer elements in the

shell zone. The typical ratio of the maximum contact radius and the sample

size is about 2 � 103. The 3D model relies on 45° swept 2D meshes since the

Vickers pyramid has symmetries so that only 1/8th of it has to be meshed. The

resulting elements are eight-node hexahedrons except along the axis where10

linear six-node prismatic elements are used. Detailed views of the meshes are

shown in Figure 1.

As for the indenter, the same procedure used for the sample mesh is em-

ployed. For 2D simulations, a triangle with an half-angle of 70.23° (equivalent

angle of the Vickers pyramid) is meshed. For 3D models, a triangle with an15

half-angle of 68° is �rst meshed before being swept.

The indenter material (diamond) is assumed to be isotropic, linear elastic

(Poisson’s ratio �i of 0.07 and Young’s modulus Ei of 1140 GPa [23]). The

contact between the indenter and the sample’s surface is strict (Signorini con-

ditions) and taken as frictionless. The contact zone and potential piling-up20

will take place along the square elements of the core zone. The boundary con-

ditions consist of a null radial displacement along the vertical axis for both

the sample and the indenter and a null displacement on the outer nodes of

the sample. The force on the indenter, P (taken as positive), is controlled and

the displacement of the indenter far from its tip, � (counted positively), is25

1No evidence of possible volumetric locking beneath the indenter tip has been observed.
7



ACCEPTED MANUSCRIPT

 
 
 
 

recorded. The experimental maximum force was Pm = 10 mN2 . The problem

is solved using the commercial software ABAQUSTM (version 6.15). The pre-

and post-processing tasks were made with Abapy toolbox [24]. Details and

views of the meshes are also visible in the documentation associated with Ref.

[24].5

The mechanical behaviour of the densi�ed silica glass is assumed to be

elasto-plastic (rate-independent) with a linear isotropic elasticity (Young’s

modulus E and Poisson’s ratio �). The plastic part, topic of this investiga-

tion, will be addressed hereinafter The �nite strains framework is employed.

3. Results10

3.1. Experimental results

The curves P � � of both PS and FD specimens are shown in Figure 2.

FD is obviously much stiffer than PS. At a given load, the penetration depth

is lower during the loading stage. Because of geometrical similarity of sharp

indentation [25, 26], the loading part of the curves is a parabola whose cur-15

vature C is the indentation loading stiffness3. Values for both specimens are

reported in Table 1, and it can be seen that FD is 44 % stiffer than PS. Af-

ter unloading, the residual penetration depth, � f , is consistently lower for

FD vis-à-vis PS. The ratio of the reversible work released during unloading,

Wr , to the total work involved during loading, Wt , is also indicative of the20

2Actually only Pm=8 is imposed because of the symmetries reported hereinbefore, for the
3D mesh.

3Actually, it is not a stiffness, and this why it is called the loading pre-factor usually. Indeed
the stiffness is the slope of the P � � curve, which is then C � �, so a linear stiffness. Still,
taking aside the kinematics �, the parameter of interest describing the stiffness is C .
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indentation response. This ratio is 18% higher for FD than for PS. This might

qualify it as "more elastic" than pristine silica.

The indentation modulus, M , is also reported in Table 2. The contribution

of the indenter stiffness was subtracted and, for linear isotropic cases, M is

E=(1 � �2). Elastic parameters of densi�ed samples have been characterised5

in literature [27, 28]. Taking the average reported value of 0.22 for � and the

M value from this work, E is found to be 106 GPa,which is in the range 110

� 6 GPa reported in literature [28]. These elastic parameters are reported in

Table 2.

The residual imprints are shown in Figure 3 along with the pro�les ex-10

tracted along the four edges and the four faces. All imprints on FD were free

of cracks, while edge cracks (quasi circles around the imprint, on the faces,

see Ref. [29? ] for a detailed description of cracking systems in silica glass)

were observed for PS. PS exhibits a sinking-in phenomenon, since all resid-

ual depths are below the reference level of the initial surface of the sample.15

The pro�les extracted (where the contribution of a edge crack is noticeable)

con�rm this. As for FD, the opposite situation is observed. An unusual long

range piling-up is visible where the matter is above the initial reference level

at a distance up to � 3 µm from the imprint center. This is the case along

the faces but also along the edges, which is rather singular for an inorganic20

glass. Usually, we can have piling-up along the faces on some silicate glasses

[4] but not along the edges. For metallic glasses, piling-up may be even more

pronounced but only along the faces [30, 31], not along the edges. This is

therefore quite a rather unique situation for this fully densi�ed silica glass.

9
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3.2. Numerical results

Since the fully densi�ed silica glass may not densify anymore, it sounds

logical to assume �rst that the only mechanism for permanent deformation

is volume-conservative plastic �ow. The subsequent absence of any strain

hardening mechanism in shear [13, 32] made us use a von Mises material for5

describing the behaviour of FD, i.e. a rate-independent elasto-plastic model

without strain hardening with the second invariant of the deviatoric part of

the stress tensor (the von Mises equivalent stress) acting as the sole driving

force. No contribution of the two other invariants is considered. In this simple

model, the only plastic parameter is the yield strength�y . We then performed10

a straightforward identi�cation procedure by minimising the gap between the

simulated force-displacement curve and the experimental one (from Figure 2)

with this plastic parameter as the only free variable4. A remarkable agreement

is found for �y = 6.5 GPa, as observed in Figure 4.

Material parameters are presented in Table 2. Due to elastic stiffening,15

the compressive yield strain is strongly decreased, by 40 %, when comparing

FD to PS.

4. Discussion

Molecular dynamic simulations (MD) have proven to be relevant tools

for examining the multiaxial response of silica glass to mechanical testing,20

which is usually uneasy experimentally. Analysing the results in terms of driv-

ing forces (shear, pressure) versus mechanisms (densi�cation, shear �ow,. . . )

4We must mention that this procedure suffers from non uniqueness when two or more pa-
rameters are to be identi�ed. This is not our case where only one parameter is determined,
as pointed out in [26, Fig. 7].
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might give some insight on the choice of a given constitutive modelling a the

continuum level, as well as the modi�cations in the short-to-medium range

order. Yuan and Huang [33] found that shear �ow in densi�ed silica can be

attributed to a less rigid local environment associated with 5-fold Si coordi-

nation defects, more amenable to local shear deformation as compared with5

the 4-fold coordination state. Very recently, Molnar et al. [32] conducted MD

simulations on binary NaO-SiO2 glasses and observed that the shear yield

strength was unaffected by the densi�cation process. In both cases, the me-

chanical behaviour of fully densi�ed glasses was found to be adequately de-

scribed by pressure-dependent yield criteria such as Drucker-Prager (when10

pressure is an additional driving force) or extended Drucker-Prager (with the

third stress invariant acting as another additional driving force). This sit-

uation ressembles that of some metallic glasses or polymeric glasses whose

behaviour has been described by such models [34, 35, 36, 37]. These models

involve a higher number of plastic parameters, in terms of yield criterion and15

plastic �ow rule, than for the von Mises model we have used and for which

only �y is required. What is remarkable is that this latter simple model suf-

�ces to describe quite perfectly the mechanical response of the indentation

test on FD. MD simulations (again very recent) in Ref. [38], on pure silica

glass, indicated that the shear yield strength was also unaffected during the20

densi�cation process. Our present work as well as experimental results pub-

lished in the literature [13] are very consistent with this statement. Indeed,

experimental values reported in Table 2 show that the yield strength of PS

and FD samples is the same.

Usually, the classical method for analysing the unloading stage of the25

force-displacement curve [23] fails in extracting the correct indentation mod-
11
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ulus (or Young’s modulus provided Poisson’s ratio is known) when piling-up

occurs. Indeed, piling-up makes this method underestimate the contact area

(� 30 % for a Zr-base metallic glass [4]) and therefore overestimates the

indentation modulus. Yet our indentation results are very consistent with lit-

erature ones in terms of elastic parameters. We examine the reasons for this5

possible discrepancy by FEA. In Figure 5, are compared the numerical pro�les

along the edges and the faces to the experimental pro�les. The comparison

is again very satisfactory, excepted at the indentation imprint apex where a

discrepancy is visible. The later may result from the �nite size of the experi-

mental indenter (tip roundness and truncated length) as AFM probe tip shape10

effect may be ruled out due to its much sharper geometry. Apart from this very

localised zone, the pro�les are well described and the residual piling-up along

both the faces and the edges are correctly assessed. Thanks to FEA, we have

also plotted the pro�le at maximum load, therefore before unloading. We can

observe that a massive sinking-in develops during loading so that the resid-15

ual piling-up is not a direct consequence of shear �ow but rather of the elastic

spring-back of the loaded surface during the unloading stage. This means that

it is relevant to use the classical method for extracting the indentation mod-

ulus and this is why our values are in total agreement with literature results.

A more precise comparison between experimental data and numerical simu-20

lations is shown in Figure 6. It is a topography view of the residual imprint.

Apart from the red part (right), the comparison is very relevant. As for the

red part, it shows that the numerical simulation underestimates the pile-up

height, maybe due to a small local tilt of the sample since this red part is not

present along the four faces of the imprint. We believe that this discrepancy25

can be ruled out by performing enhanced simulations with a much �ner mesh
12
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in the core zone, but this is not the topic of the present work.

To go a step further on this issue, we must now refer to results from a

numerical benchmark proposed by Charleux et al. [4] with two different clas-

sical constitutive equations (Hollomon and Drucker-Prager) to extend this

observation. Using the same procedure, we can get some insight on possible5

piling-up and sinking-in both during loading and loading. This is made (in

2D) for the sole Hollomon model with a strain hardening coef�cient n = 0

corresponding to the von Mises model, which was shown earlier in this work

to be a relevant candidate to quantitatively describe the mechanical response

of FD to the indentation test (cf. Figures 4 and 5). Results are presented in10

Figure 7. It is observed, that up to a yield strain �y of � 1% piling-up oc-

curs both during loading and unloading. After this value, sinking-in prevails

during loading while piling-up is always observed after unloading, even if it

decreases to very low values as �y increases. The case for FD corresponds

to an experimental value of �y = 6.1%; it is superimposed and matches very15

well the numerical results.

The classical relationship between hardness and compressive yield strength

[25] is H � c Y (Tabor’s rule-of-thumb), where Y is the yield strength of the

material for a given representative strain. For non strain hardening materials,

it is �y . For crystalline metals, c, the constraint factor, is taken as 3 and is fre-20

quently used as a convenient rule-of-thumb. Actually, this is strictly speaking

between Vickers’s hardness Hv and �y [25]. There is a � 7% difference be-

tween H and Hv, so c � 2.8. As reported in Table 2, this ratio is � 1.25 for PS

and 1.9 for FD. While it can be be treacherous to use Tabor’s rule for a material

like PS exhibiting an additional densi�cation mechanism under indentation,25

this should be quite straightforward for FD since it is adequately modelled by
13
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a von Mises material. Yet, for FD, the ratio hardness-to-yield strength is much

lower than Tabor’s rule. If this number of 2.8 has been revisited since the origi-

nal work of Tabor, the recognised values nowadays range from 2.6 to 2.7 [39].

It has been shown that for pressure-sensitive glasses, like metallic glasses or

polymeric glasses, this ratio can be higher [40, 41, 37]. However, for FD this5

ratio is much lower than the value for pressure-insensitive materials like met-

als. Using FEA (2D), we have plotted in Figure 8, the ratio hardness-to-yield

strength (H=�y) for von Mises materials (for � = 0.22) as a function of the

yield strain �y in the particular situation where the indenter is of Vickers type.

For this indenter, the so-called indentation strain �i = cotan� , where � is the10

half angle of the equivalent cone (here 70.27°), is 0.358. Classically we have

two regimes described for example in Ref. [26]: a fully plastic regime, for

low values of �y , corresponding to a plateau value of � 2.65, the so-called

constraint factor c; and an elasto-plastic regime where H=�y is lower than c.

The experimental case of �y = 6.1% for FD is superimposed on Fig. 8, and15

matches very well with the numerical results. This indicates, that when using

a Vickers indenter, we are still in the elasto-plastic regime of indentation for

FD, explaining the low value of the ratio hardness-to-yield strength, which is

not in this case the constraint factor de�ned for the sole fully plastic regime

of indentation. The Vickers indenter is not sharp enough to reach this latter20

regime.

5. Concluding remarks

We have characterised the mechanical properties (elastic stiffness, hard-

ness) of a fully densi�ed silica glass samples (21.6 % increase in density) by

using instrumented indentation testing. We have also shown that the ma-25

14
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terial’s response to Vickers indentation (force-displacement curve, residual

imprint) is correctly assessed by a constitutive equation usually relevant for

some crystalline metals, i.e. a rate-independent pressure insensitive elasto-

plastic model without strain-hardening, usually referred to as a von Mises

material. This singular comparison with metallic alloys ends rapidly since the5

yield strength and yield strain values (respectively 6.5 GPa and 6.1 %) are far

higher than those for crystalline alloys. These values are in agreement with

very recent experimental and simulation studies on densi�ed silica or silicate

glasses. Apparent disagreement with indentation features (a perfect assess-

ment by the Oliver and Pharr’s method of Young’s modulus in the presence of10

a massive piling-up around the residual imprints ; a ratio hardness-to-yield

strength of 1.9 much lower than the constraint factor of � 2.7 for crystalline

alloys) have been explained again by the very high value of the yield strain.

Indeed, �nite element analyses have shown that, during the loading stage of

indentation, a massive sinking-in occurs and it is because of the very high15

elastic spring-back that unusual (as compared to classical alloys or metallic

glasses) piling-up is observed around the residual imprints. The same analy-

ses have highlighted that the material is in the so-called elastoplastic inden-

tation regime and not in the fully plastic one, for this Vickers indenter, where

a hardness-to-yield strength value of � 2.7 is expected.20

This mechanical description of fully densi�ed silica glass mechanical be-

haviour under Vickers indentation, to our opinion, paves the way for new

insights into the constitutive modelling of pristine silica glass during inden-

tation loading, which is a key to understand the transition from plasticity to

cracking in these oxide glasses to increase their use in service lifetime.25
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C [GPa] Wr/Wt [%] � f [nm] M [GPa] H [GPa] HIT [GPa]

Pristine 106 � 1 31.7 � 0.1 486 � 1 69 � 1 8.40 � 0.30 8.55 � 0.05

Fully densi�ed 153 � 1 37.3 � 1.2 412 � 3 112 � 2 11.5 � 0.5 11.5 � 1.0

Table 1. Mechanical properties of pristine silica and fully densi�ed silica from instru-
mented indentation testing. C is the loading pre-factor. Wr is the reversible work
during unloading and Wt the total work involved in the test. � f is the residual pene-
tration depth, and M is the indentation modulus of the material. H is Meyer’s hard-
ness measured from the residual imprint. HIT is the IIT hardness following Oliver
and Pharr’s method [42].
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E [GPa] � [-] �y [GPa] �y [%] H=�y [-]

Pristine (from [12, 13]) 72 0.15 � 6.5-7.0 � 9.5 1.2-1.3

Fully densi�ed (this work) 106 � 1 0.22 6.5 6.1 1.89 � 0.08

Table 2. Mechanical properties of both pristine and fully densi�ed silica glass. E, �, �y
and �y are respectively Young’s modulus, Poisson’s ratio, compressive yield strength
and compressive yield strain in pure compression. The ratio hardness to compressive
yield strength is also reported.
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Figure 1. View of the 2D and 3D meshes used in the FEM simulations for the material
close to the contact location. The core and shell zones are represented respectively
in red and blue. The 3D mesh is a 45o swept version of a coarse 2D mesh. lc stands
for the horizontal length of the core zone.
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Figure 2. Nano-indentation force-displacements curves for pristine silica glass and fully
densi�ed silica glass. Five tests are carried out for each type, and experimental re-
producibility is con�rmed.
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Figure 3. Topography AFM images (5�5 µm2, top) presenting the residual imprints of a
Vickers indentation (100 mN) for the pristine silica glass (left) and the fully densi�ed
silica (right). For sake of presentation the altitudes below -10 nm are masked (white
part). For pristine silica (used only for comparison), edge cracks are visible. For fully
densi�ed silica, colors different from blue are indicative of a residual pile-up (z > 0).
A unusual long range residual pile-up all around the imprint is observed. Altitude
pro�les are then extracted (bottom) along the four edges (green) and the four faces
(magenta) for both specimens. No piling-up is visible along the faces and the edges
for pristine silica. Piling-up is present along the faces and the edges for fully densi�ed
silica silica.
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Figure 4. Force-displacement curves of the nano-indentation test in fully densi�ed silica
at 100 mN. Comparison between experimental results and numerical simulation (3D
FEA).
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Figure 5. Comparison between experimental (AFM) results and numerical simulations
(3D FEA) of the residual imprint pro�le in fully densi�ed silica indented at 100 mN
by a Vickers pyramid. The four experimental pro�les are plotted together for sake of
presentation either along the edges (right) or the faces (left). The pro�les at max-
imum load, as predicted by the simulations (blue color), indicate that there is no
piling-up during loading.
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Figure 6. Comparison between experimental (AFM, right) results and numerical simu-
lations (3D FEA, left) of the residual imprint pro�le in fully densi�ed silica indented
at 100 mN by a Vickers pyramid. Topography view.
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Figure 7. Axisymmetric numerical simulation results with a von Mises constitutive
model. On the left side, two states of the simulation are superimposed: at maxi-
mum load (maximum penetration depth �max) and after complete unloading. The
indenter is �lled in grey (under load) while the sample is �lled in red (under load)
or blue (after unloading). The red circle marker represents the highest point in con-
tact under load zc , while the blue square marker represents the highest point of the
residual imprint zu,max . (a) corresponds to a yield strain "y = 0.5%, while (b) is for
"y = 6%. The values of zc and zu,max , with respect to �max, are represented as a
function of "y on the right side (c). Piling-up (positive values of the relative depth)
and sinking-in (negative values) during loading and unloading are visible. Experi-
mental values (3D) for fully densi�ed silica (FD) are superimposed for the faces and
the edges.
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Figure 8. Normalised indentation stress (H is Meyer’s hardness and �y is the material’s
yield strength) versus normalised indentation strain (cotan� , where � is the half
angle of the equivalent cone, here 70.27°; �y is the material’s yield strain). Numerical
simulations (2D, �= 0.22) allow to distinguish between the fully plastic regime (FP),
for which H=�y is a constant c = 2.65 and the elasto-plastic regime (EP), for which
H=�y is an increasing function of 1/�y . The experimental value for fully densi�ed
silica (FD) is superimposed.
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