Skip to Main content Skip to Navigation
Journal articles

Coherent and incoherent structural dynamics in laser-excited antimony

Abstract : We investigate the excitation of phonons in photoexcited antimony and demonstrate that the entire electron-lattice interactions, in particular coherent and incoherent electron-phonon coupling, can be probed simultaneously. Using femtosecond electron diffraction (FED) with high temporal resolution, we observe the coherent excitation of the fully symmetric A1g optical phonon mode via the shift of the minimum of the atomic potential energy surface. Ab initio molecular dynamics simulations on laser excited potential energy surfaces are performed to quantify the change in lattice potential and the associated real-space amplitude of the coherent atomic oscillations. Good agreement is obtained between the parameter-free calculations and the experiment. In addition, our experimental configuration allows observing the energy transfer from electrons to phonons via incoherent electron-lattice scattering events. The electron-phonon coupling is determined as a function of electronic temperature from our DFT calculations and the data by applying different models for the energy transfer. © 2017 American Physical Society.
Document type :
Journal articles
Complete list of metadata
Contributor : Laurent Jonchère <>
Submitted on : Friday, April 14, 2017 - 9:44:29 AM
Last modification on : Friday, July 2, 2021 - 10:32:20 AM

Links full text



L. Waldecker, T. Vasileiadis, Roman Bertoni, R. Ernstorfer, T. Zier, et al.. Coherent and incoherent structural dynamics in laser-excited antimony. Physical Review B, American Physical Society, 2017, 95 (5), ⟨10.1103/PhysRevB.95.054302⟩. ⟨hal-01508399⟩



Record views