D. Virgilio and F. , P2X Receptors and Inflammation, Current Medicinal Chemistry, vol.22, issue.7, pp.866-77, 2015.
DOI : 10.2174/0929867322666141210155311

N. Riteau, P. Gasse, L. Fauconnier, A. Gombault, M. Couegnat et al., Receptor in Lung Inflammation and Fibrosis, American Journal of Respiratory and Critical Care Medicine, vol.182, issue.6, pp.774-83, 2010.
DOI : 10.1164/rccm.201003-0359OC

URL : https://hal.archives-ouvertes.fr/hal-00591486

L. Portales-cervantes, P. Niño-moreno, M. Salgado-bustamante, M. H. García-hernández, L. Baranda-candido et al., The His155Tyr (489C>T) single nucleotide polymorphism of P2RX7 gene confers an enhanced function of P2X7 receptor in immune cells from patients with rheumatoid arthritis, Cellular Immunology, vol.276, issue.1-2, pp.168-175, 2012.
DOI : 10.1016/j.cellimm.2012.05.005

J. H. Tao, Y. Zhang, and X. P. Li, P2X7R: A potential key regulator of acute gouty arthritis, Seminars in Arthritis and Rheumatism, vol.43, issue.3, pp.376-380, 2013.
DOI : 10.1016/j.semarthrit.2013.04.007

M. Idzko, H. Hammad, M. Van-nimwegen, M. Kool, M. A. Willart et al., Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells, Nature Medicine, vol.118, issue.8, pp.913-919, 2007.
DOI : 10.4049/jimmunol.174.12.7725

G. Burnstock, G. E. Knight, and A. V. Greig, Purinergic Signaling in Healthy and Diseased Skin, Journal of Investigative Dermatology, vol.132, issue.3, pp.526-546, 2012.
DOI : 10.1038/jid.2011.344

URL : http://doi.org/10.1038/jid.2011.344

B. F. King, receptor antagonists ease the pain, British Journal of Pharmacology, vol.1052, issue.5, pp.565-567, 2007.
DOI : 10.1152/physrev.00015.2002

E. Boué-grabot, M. A. Akimenko, and P. Séguéla, Unique Functional Properties of a Sensory Neuronal P2X ATP-Gated Channel from Zebrafish, Journal of Neurochemistry, vol.49, issue.4, pp.1600-1607, 2000.
DOI : 10.1016/S0022-2836(05)80360-2

S. Mariathasan, D. S. Weiss, K. Newton, J. Mcbride, K. O-'rourke et al., Cryopyrin activates the inflammasome in response to toxins and ATP, Nature, vol.46, issue.7081, pp.228-232, 2006.
DOI : 10.4049/jimmunol.173.10.6338

A. La-sala, D. Ferrari, D. Virgilio, F. Idzko, M. Norgauer et al., Alerting and tuning the immune response by extracellular nucleotides, Journal of Leukocyte Biology, vol.73, issue.3, pp.339-343, 2003.
DOI : 10.1189/jlb.0802418

M. J. Bours, E. L. Swennen, D. Virgilio, F. Cronstein, B. N. Dagnelie et al., Adenosine 5???-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation, Pharmacology & Therapeutics, vol.112, issue.2, pp.358-404, 2006.
DOI : 10.1016/j.pharmthera.2005.04.013

S. Velasquez and E. A. Eugenin, Role of Pannexin-1 hemichannels and purinergic receptors in 17

A. Surprenant and R. A. North, Signaling at Purinergic P2X Receptors, Annual Review of Physiology, vol.71, issue.1, pp.333-359, 2009.
DOI : 10.1146/annurev.physiol.70.113006.100630

V. Ralevic and G. Burnstock, Receptors for purines and pyrimidines, Pharmacol. Rev, vol.50, pp.413-492, 1998.

W. G. Junger, Immune cell regulation by autocrine purinergic signalling, Nature Reviews Immunology, vol.3, issue.3, pp.201-212, 2011.
DOI : 10.1371/journal.pone.0002599

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209705

E. R. Lazarowski and R. C. Boucher, Purinergic receptors in airway epithelia, Current Opinion in Pharmacology, vol.9, issue.3, pp.262-267, 2009.
DOI : 10.1016/j.coph.2009.02.004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2692813

L. Baron, A. Gombault, M. Fanny, B. Villeret, F. Savigny et al., The NLRP3 inflammasome is activated by nanoparticles through ATP, ADP and adenosine, Cell Death and Disease, vol.2, issue.2, p.1629, 2015.
DOI : 10.4049/jimmunol.0803154

URL : https://hal.archives-ouvertes.fr/hal-01128180

L. Antonioli, C. Blandizzi, P. Pacher, and G. Haskó, Immunity, inflammation and cancer: a leading role for adenosine, Nature Reviews Cancer, vol.189, issue.12, pp.842-857, 2013.
DOI : 10.4049/jimmunol.1200744

M. P. Abbracchio and G. Burnstock, Purinoceptors: Are there families of P2X and P2Y purinoceptors?, Pharmacology & Therapeutics, vol.64, issue.3, pp.445-475, 1994.
DOI : 10.1016/0163-7258(94)00048-4

J. M. Boeynaems, D. Communi, N. S. Gonzalez, and B. Robaye, Overview of the P2 Receptors, Seminars in Thrombosis and Hemostasis, vol.31, issue.02, pp.139-149, 2005.
DOI : 10.1055/s-2005-869519

M. R. Elliott, F. B. Chekeni, P. C. Trampont, E. R. Lazarowski, A. Kadl et al., Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance, Nature, vol.127, issue.7261, pp.282-286, 2009.
DOI : 10.1016/S0167-4781(01)00291-3

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851546

R. Kruse, S. Säve, and K. Persson, Adenosine Triphosphate Induced P2Y2 Receptor Activation Induces Proinflammatory Cytokine Release in Uroepithelial Cells, The Journal of Urology, vol.188, issue.6, pp.2419-2425, 2012.
DOI : 10.1016/j.juro.2012.07.095

M. F. Jarvis and B. S. Khakh, ATP-gated P2X cation-channels, Neuropharmacology, vol.56, issue.1, pp.208-215, 2009.
DOI : 10.1016/j.neuropharm.2008.06.067

G. Burnstock, Purine and pyrimidine receptors, Cellular and Molecular Life Sciences, vol.64, issue.12, pp.1471-1483, 2007.
DOI : 10.1007/s00018-007-6497-0

A. Nicke, H. G. Bäumert, J. Rettinger, A. Eichele, G. Lambrecht et al., P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels, The EMBO Journal, vol.17, issue.11, pp.3016-3044, 1998.
DOI : 10.1093/emboj/17.11.3016

C. Guo, M. Masin, O. S. Qureshi, and R. D. Murrell-lagnado, Evidence for Functional P2X4/P2X7 Heteromeric Receptors, Molecular Pharmacology, vol.72, issue.6, pp.1447-1456, 2007.
DOI : 10.1124/mol.107.035980

URL : http://molpharm.aspetjournals.org/content/molpharm/72/6/1447.full.pdf

B. S. Khakh, X. R. Bao, C. Labarca, and H. A. Lester, Neuronal P2X transmitter-gated cation channels change their ion selectivity in seconds, Nature Neuroscience, vol.2, issue.4, pp.322-330, 1999.
DOI : 10.1038/7233

B. S. Khakh and R. A. North, P2X receptors as cell-surface ATP sensors in health and disease, Nature, vol.279, issue.7102, pp.527-532, 2006.
DOI : 10.4049/jimmunol.168.12.6436

A. Saul, R. Hausmann, A. Kless, and A. Nicke, Heteromeric assembly of P2X subunits, Frontiers in Cellular Neuroscience, vol.7, p.250, 2013.
DOI : 10.3389/fncel.2013.00250

URL : http://journal.frontiersin.org/article/10.3389/fncel.2013.00250/pdf

D. Ferrari, C. Pizzirani, E. Adinolfi, R. M. Lemoli, A. Curti et al., The P2X7 Receptor: A Key Player in IL-1 Processing and Release, The Journal of Immunology, vol.176, issue.7, pp.3877-83, 2006.
DOI : 10.4049/jimmunol.176.7.3877

G. Burnstock, P2X ion channel receptors and inflammation, Purinergic Signalling, vol.87, issue.1, pp.59-67, 2016.
DOI : 10.1152/physrev.00043.2006

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4749528

G. Burnstock and G. E. Knight, Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems, Int. Rev. Cytol, vol.240, pp.31-304, 2004.
DOI : 10.1016/S0074-7696(04)40002-3

J. R. Gever, D. A. Cockayne, M. P. Dillon, G. Burnstock, and . A. Ford, Pharmacology of P2X channels, Pfl??gers Archiv - European Journal of Physiology, vol.120, issue.23, pp.513-537, 2006.
DOI : 10.1113/jphysiol.1996.sp021722

A. Surprenant, F. Rassendren, E. Kawashima, R. A. North, and G. Buell, The Cytolytic P2Z Receptor for Extracellular ATP Identified as a P2X Receptor (P2X7), Science, vol.272, issue.5262, pp.735-738, 1996.
DOI : 10.1126/science.272.5262.735

A. Nicke, Y. H. Kuan, M. Masin, J. Rettinger, B. Marquez-klaka et al., A Functional P2X7 Splice Variant with an Alternative Transmembrane Domain 1 Escapes Gene Inactivation in P2X7 Knock-out Mice, Journal of Biological Chemistry, vol.177, issue.38, pp.25813-25822, 2009.
DOI : 10.4049/jimmunol.0900120

M. Kim, L. H. Jiang, H. L. Wilson, R. A. North, and A. Surprenant, Proteomic and functional evidence for a P2X7 receptor signalling complex, The EMBO Journal, vol.20, issue.22, pp.6347-6358, 2001.
DOI : 10.1093/emboj/20.22.6347

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC125721

T. H. Steinberg and S. C. Silverstein, Extracellular ATP4? promotes cation fluxes in the J774 mouse macrophage cell line, J. Biol. Chem, vol.262, pp.3118-3140, 1987.

S. Locovei, E. Scemes, F. Qiu, D. C. Spray, and G. Dahl, receptor death complex, FEBS Letters, vol.58, issue.3, pp.483-488, 2007.
DOI : 10.1080/15216540600794526

T. Gicquel, T. Victoni, A. Fautrel, S. Robert, F. Gleonnec et al., Involvement of purinergic receptors and NOD-like receptor-family protein 3-inflammasome pathway in the adenosine triphosphate-induced cytokine release from macrophages, Clinical and Experimental Pharmacology and Physiology, vol.15, issue.4, pp.279-286, 2014.
DOI : 10.1016/S1074-7613(01)00229-1

URL : https://hal.archives-ouvertes.fr/hal-01134782

T. Gicquel, S. Robert, T. Victoni, and V. Lagente, L???inflammasome NLRP3??: physiopathologie et application th??rapeutique, La Presse M??dicale, vol.45, issue.4, pp.438-446, 2016.
DOI : 10.1016/j.lpm.2016.01.006

F. Martinon, V. Pétrilli, A. Mayor, A. Tardivel, and J. Tschopp, Gout-associated uric acid crystals activate the NALP3 inflammasome, Nature, vol.20, issue.7081, pp.237-241, 2006.
DOI : 10.7326/0003-4819-62-4-648

URL : http://www.nature.com/nature/journal/v440/n7081/pdf/nature04516.pdf

F. Bauernfeind, A. Ablasser, E. Bartok, S. Kim, J. Schmid-burgk et al., Inflammasomes: current understanding and open questions, Cellular and Molecular Life Sciences, vol.284, issue.5, pp.765-783, 2011.
DOI : 10.1074/jbc.M806084200

F. Bauernfeind, E. Bartok, A. Rieger, L. Franchi, G. Núñez et al., Cutting Edge: Reactive Oxygen Species Inhibitors Block Priming, but Not Activation, of the NLRP3 Inflammasome, The Journal of Immunology, vol.187, issue.2, pp.613-617, 2011.
DOI : 10.4049/jimmunol.1100613

K. Schroder, R. Zhou, and J. Tschopp, The NLRP3 Inflammasome: A Sensor for Metabolic Danger?, Science, vol.284, issue.31, pp.296-300, 2010.
DOI : 10.1074/jbc.M109.023689

P. Gasse, N. Riteau, S. Charron, S. Girre, L. Fick et al., Uric Acid Is a Danger Signal Activating NALP3 Inflammasome in Lung Injury Inflammation and Fibrosis, American Journal of Respiratory and Critical Care Medicine, vol.179, issue.10, pp.903-913, 2009.
DOI : 10.1164/rccm.200808-1274OC

URL : https://hal.archives-ouvertes.fr/hal-00404885

M. Seil, M. Ouaaliti, U. Fontanils, I. G. Etxebarria, S. Pochet et al., Ivermectin-dependent release of IL-1beta in response to ATP by peritoneal macrophages from P2X(7)-KO mice, Purinergic Signal, vol.4, pp.405-416, 2010.

H. Uratsuji, Y. Tada, T. Kawashima, M. Kamata, C. S. Hau et al., P2Y6 Receptor Signaling Pathway Mediates Inflammatory Responses Induced by Monosodium Urate Crystals, The Journal of Immunology, vol.188, issue.1, pp.436-444, 2012.
DOI : 10.4049/jimmunol.1003746

URL : http://www.jimmunol.org/content/jimmunol/188/1/436.full.pdf

A. Vergani, C. Fotino, F. D-'addio, S. Tezza, M. Podetta et al., Effect of the Purinergic Inhibitor Oxidized ATP in a Model of Islet Allograft Rejection, Diabetes, vol.62, issue.5, pp.1665-1675, 2013.
DOI : 10.2337/db12-0242

S. H. Cao, S. P. Yuan, and Q. Hou, Advance in the research on P2X7 and inflammatory respiratory diseases, Yao Xue Xue Bao, vol.48, pp.1183-1188, 2013.

D. Baudelet, E. Lipka, R. Millet, and A. Ghinet, Involvement of the P2X7 purinergic receptor in inflammation: an update of antagonists series since, p.20, 2009.

A. Abdel-magid, Promising Therapeutic Potential of P2X7 Modulators, ACS Medicinal Chemistry Letters, vol.7, issue.4, pp.348-350, 2016.
DOI : 10.1021/acsmedchemlett.6b00083

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4834659

T. Gicquel, S. Robert, P. Loyer, T. Victoni, A. Bodin et al., IL-1?? production is dependent on the activation of purinergic receptors and NLRP3 pathway in human macrophages, The FASEB Journal, vol.29, issue.10, pp.4162-4173, 2015.
DOI : 10.1096/fj.14-267393

L. Y. Lenertz, M. L. Gavala, Y. Zhu, and P. J. Bertics, Transcriptional control mechanisms associated with the nucleotide receptor P2X7, a critical regulator of immunologic, osteogenic, and neurologic functions, Immunologic Research, vol.278, issue.1, pp.22-38, 2011.
DOI : 10.1074/jbc.M212759200

S. Robert, T. Gicquel, T. Victoni, S. S. Valenca, E. Barreto et al., Involvement of matrix metalloproteinases (MMPs) and inflammasome pathway in molecular mechanisms of fibrosis, Bioscience Reports, vol.36, issue.4, p.20160107, 2016.
DOI : 10.1042/BSR20160107

URL : https://hal.archives-ouvertes.fr/hal-01373301

M. Selman, T. E. King, and A. Pardo, Idiopathic Pulmonary Fibrosis: Prevailing and Evolving Hypotheses about Its Pathogenesis and Implications for Therapy, Annals of Internal Medicine, vol.134, issue.2, pp.136-151, 2001.
DOI : 10.7326/0003-4819-134-2-200101160-00015

A. L. Katzenstein and J. L. Myers, Idiopathic Pulmonary Fibrosis, American Journal of Respiratory and Critical Care Medicine, vol.157, issue.4, pp.1301-1315, 1998.
DOI : 10.1164/ajrccm.157.4.9707039

P. A. Ward and G. W. Hunninghake, Lung Inflammation and Fibrosis, American Journal of Respiratory and Critical Care Medicine, vol.157, issue.4, pp.157-123, 1998.
DOI : 10.1164/ajrccm.157.4.nhlbi-10

S. T. Lehtonen, A. Veijola, H. Karvonen, E. Lappi-blanco, R. Sormunen et al., Pirfenidone and nintedanib modulate properties of fibroblasts and myofibroblasts in idiopathic pulmonary fibrosis, Respiratory Research, vol.191, issue.1, p.14, 2016.
DOI : 10.1164/rccm.201406-1106LE

M. Myllärniemi and R. Kaarteenaho, Pharmacological treatment of idiopathic pulmonary fibrosis ??? preclinical and clinical studies of pirfenidone, nintedanib, and N-acetylcysteine, European Clinical Respiratory Journal, vol.62, issue.1, p.26385, 2015.
DOI : 10.1016/S1734-1140(10)70250-4

G. Hughes, H. Toellner, H. Morris, C. Leonard, and N. Chaudhuri, Real World Experiences: Pirfenidone and Nintedanib are Effective and Well Tolerated Treatments for Idiopathic Pulmonary Fibrosis, Journal of Clinical Medicine, vol.31, issue.9, p.9, 2016.
DOI : 10.1111/resp.12297

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5039481

K. E. Hostettler, J. Zhong, E. Papakonstantinou, G. Karakiulakis, M. Tamm et al., Anti-fibrotic effects of nintedanib in lung fibroblasts derived from patients with idiopathic pulmonary fibrosis, Respiratory Research, vol.25, issue.3, p.157, 2014.
DOI : 10.1016/j.cytogfr.2014.03.003

P. Rogliani, L. Calzetta, F. Cavalli, M. G. Matera, and M. Cazzola, Pirfenidone, nintedanib and N-acetylcysteine for the treatment of idiopathic pulmonary fibrosis: A systematic review and meta-analysis, Pulmonary Pharmacology & Therapeutics, vol.40, pp.95-103, 2016.
DOI : 10.1016/j.pupt.2016.07.009

D. Lu and P. A. Insel, Cellular Mechanisms of Tissue Fibrosis. 6. Purinergic signaling and response in fibroblasts and tissue fibrosis, AJP: Cell Physiology, vol.306, issue.9, pp.306-779, 2014.
DOI : 10.1152/ajpcell.00381.2013

S. L. Friedman, Liver fibrosis ??? from bench to bedside, Journal of Hepatology, vol.38, pp.38-53, 2003.
DOI : 10.1016/S0168-8278(02)00429-4

G. Szabo and T. Csak, Inflammasomes in liver diseases, Journal of Hepatology, vol.57, issue.3, pp.642-654, 2012.
DOI : 10.1016/j.jhep.2012.03.035

URL : http://doi.org/10.1016/j.jhep.2012.03.035

S. Chatterjee, R. Rana, J. Corbett, M. B. Kadiiska, J. Goldstein et al., P2X7 receptor-NADPH oxidase axis mediates protein radical formation and Kupffer cell activation in carbon tetrachloride-mediated steatohepatitis in obese mice, Free Radical Biology and Medicine, vol.52, issue.9, pp.1666-1679, 2012.
DOI : 10.1016/j.freeradbiomed.2012.02.010

C. Huang, W. Yu, H. Cui, Y. Wang, L. Zhang et al., P2X7 blockade attenuates mouse liver fibrosis, Molecular Medicine Reports, vol.9, issue.1, pp.57-62, 2014.
DOI : 10.3892/mmr.2013.1807

S. Chatterjee and S. Das, P2X7 Receptor as a Key Player in Oxidative Stress-Driven Cell Fate in Nonalcoholic Steatohepatitis, Oxidative Medicine and Cellular Longevity, vol.182, issue.4, p.172493, 2015.
DOI : 10.1038/ni.1980

M. Kolb, P. Bonniaud, T. Galt, P. J. Sime, M. M. Kelly et al., 1 Gene to Lungs of ???Fibrosis-prone??? and ???Fibrosis-resistant??? Mouse Strains, American Journal of Respiratory Cell and Molecular Biology, vol.27, issue.2, pp.141-150, 2002.
DOI : 10.1165/ajrcmb.27.2.4674

A. Briasoulis, T. Telila, M. Palla, G. Siasos, and D. Tousoulis, P2Y12 Receptor Antagonists: Which One to Choose? A Systematic Review and Meta-Analysis, Current Pharmaceutical Design, vol.22, issue.29, 2016.
DOI : 10.2174/1381612822666160608114424

F. Weber, P. Esser, T. Müller, J. Ganesan, P. Pellegatti et al., results in resistance to contact hypersensitivity, The Journal of Experimental Medicine, vol.163, issue.12, pp.2609-2619, 2010.
DOI : 10.1038/sj.jid.5700819

P. Honore, D. Donnelly-roberts, M. Namovic, C. Zhong, C. Wade et al., The antihyperalgesic activity of a selective P2X7 receptor antagonist, A-839977, is lost in IL-1???? knockout mice, Behavioural Brain Research, vol.204, issue.1, pp.77-81, 2009.
DOI : 10.1016/j.bbr.2009.05.018

P. Pelegrin, Targeting interleukin-1 signaling in chronic inflammation: focus on P2X(7) receptor and Pannexin-1, Drug News Perspect, vol.21, pp.424-433, 2008.

N. Arulkumaran, R. J. Unwin, and F. W. Tam, A potential therapeutic role for P2X7 receptor (P2X7R) antagonists in the treatment of inflammatory diseases, Expert Opinion on Investigational Drugs, vol.12, issue.7, pp.897-915, 2011.
DOI : 10.1007/s11302-009-9141-7

N. Mehta, M. Kaur, M. Singh, S. Chand, B. Vyas et al., Purinergic receptor P2X7: A novel target for anti-inflammatory therapy, Bioorganic & Medicinal Chemistry, vol.22, issue.1, pp.54-88, 2014.
DOI : 10.1016/j.bmc.2013.10.054

E. C. Keystone, M. M. Wang, M. Layton, S. Hollis, and I. B. Mcinnes, purinergic receptor antagonist AZD9056 on the signs and symptoms of rheumatoid arthritis in patients with active disease despite treatment with methotrexate or sulphasalazine, Annals of the Rheumatic Diseases, vol.71, issue.10, pp.1630-1635, 2012.
DOI : 10.1136/annrheumdis-2011-143578

T. C. Stock, B. J. Bloom, N. Wei, S. Ishaq, W. Park et al., Efficacy and Safety of CE-224,535, an Antagonist of P2X7 Receptor, in Treatment of Patients with Rheumatoid Arthritis Inadequately Controlled by Methotrexate, The Journal of Rheumatology, vol.39, issue.4, pp.720-727, 2012.
DOI : 10.3899/jrheum.110874

A. Cesaro, P. Brest, V. Hofman, X. Hébuterne, S. Wildman et al., Amplification loop of the inflammatory process is induced by P2X7R activation in intestinal epithelial cells in response to neutrophil transepithelial migration, AJP: Gastrointestinal and Liver Physiology, vol.299, issue.1, pp.299-331, 2010.
DOI : 10.1152/ajpgi.00282.2009

URL : https://hal.archives-ouvertes.fr/hal-00553099

P. Hofman, J. Cherfils-vicini, M. Bazin, M. Ilie, T. Juhel et al., Genetic and Pharmacological Inactivation of the Purinergic P2RX7 Receptor Dampens Inflammation but Increases Tumor Incidence in a Mouse Model of Colitis-Associated Cancer, Cancer Research, vol.75, issue.5, pp.835-845, 2015.
DOI : 10.1158/0008-5472.CAN-14-1778

Y. Yiangou, P. Facer, P. Durrenberger, I. P. Chessell, A. Naylor et al., COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord, BMC Neurology, vol.3, issue.1, p.12, 2006.
DOI : 10.1016/S1471-4892(02)00004-8

J. K. Ryu and J. G. Mclarnon, Block of purinergic P2X7 receptor is neuroprotective in an animal model of Alzheimer??s disease, NeuroReport, vol.19, issue.17, pp.1715-1719, 2008.
DOI : 10.1097/WNR.0b013e3283179333

A. Sinadinos, C. N. Young, R. Al-khalidi, A. Teti, P. Kalinski et al., P2RX7 Purinoceptor: A Therapeutic Target for Ameliorating the Symptoms of Duchenne Muscular Dystrophy, PLOS Medicine, vol.346, issue.10, p.1001888, 2015.
DOI : 10.1371/journal.pmed.1001888.s013

A. Reichenbach and A. Bringmann, Purinergic signaling in retinal degeneration and regeneration, Neuropharmacology, vol.104, pp.194-211, 2016.
DOI : 10.1016/j.neuropharm.2015.05.005

S. Roger, B. Jelassi, I. Couillin, P. Pelegrin, P. Besson et al., Understanding the roles of the P2X7 receptor in solid tumour progression and therapeutic perspectives, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1848, issue.10, pp.2584-602, 2015.
DOI : 10.1016/j.bbamem.2014.10.029