. Bis, 70 mL), and HOAc 300 (13.20 mL) was heated to 100 °C for 4 h. The resulting mixture was 301 then cooled to 0 °C and basified to pH 9 with an aqueous NaOH 302 solution (2 M) Ethyl acetate (100 mL) was added, and the mixture 303 was washed successively with an aqueous NaHSO 3 solution and brine. 304 The combined organic layers were dried over MgSO 4 , and the solvent 305 was evaporated. The residue was purified over silica (10% EtOAc in 306 petroleum ether as the solvent) The desired fractions were combined 307 and the solvent evaporated, yielding the title compound as oil (0.655 g, 308 1.83 mmol) Yield: 76%. R f : 0.33 (10% EtOAc in petroleum ether on 309 silica). 1 H NMR (400 MHz, CDCl 3 ): ? 8(trifluoromethyl)phenyl)methyl)pyridine L3, L2. A mixture of the 299 A2 (0.900 g, 2.41 mmol), aqueous 57% HI62?8.56 (m, 1H), 7.62?7.56 310 (m, 1H), 7.31 (s, 4H), 7.10 (s, 6H), 5.62 (s, 1H)-MS (ASAP + ) [M + H] + 313 Calculated equiv) and PBr 3 (25 mL) was vigorously 316 stirred and heated and kept at 110 °C for 2 h. The mixture was then 317 cooled to r.t. and was carefully poured onto ice, and aqueous NaOH

1. Hz and J. =. Dt, 75 (s, 1H) 13 C NMR 332 (126 MHz, CDCl 3 ): ? 161, pp.382-382, 1030.

H. The-re?gionre?gion-bretagne, F. , and E. Z. , Andrews and 409 EPSRC (EP/M02105X/1) for financial support We thank 410 Umicore AG for the gift of materials. We thank the EPSRC UK 411 National Mass Spectrometry Facility at Swansea University for 412 analytical services. T.R. thanks the FEDER funds for financial 413 support helping the acquisition of the D8Venture diffractom- 414 eter of ISCR. D.J. acknowledges the European Research 415 Council and the Re?gionRe?gion des Pays de la Loire for financial 416 support in the framework of a Starting Grant (Marches 417 -278845) and the LUMOMAT RFI project, respectively. This 418 research used computational resources of (1) the GENCI- 419 CINES, IDRIS, issue.231, p.422

Y. Chi and P. Chou, Transition-metal phosphors with cyclo- 423 metalating ligands: fundamentals and applications, Chem. Soc. Rev, vol.424, issue.392, pp.638-425, 2010.
DOI : 10.1039/b916237b

G. Zhou, W. Y. Wong, and X. Yang, New Design Tactics in OLEDs Using Functionalized 2-Phenylpyridine-Type Cyclometalates of Iridium(III) and Platinum(II), Chemistry - An Asian Journal, vol.11, issue.7, pp.1706-1710, 2011.
DOI : 10.1039/b904382a

C. Fan and C. Yang, Yellow/orange emissive heavy-metal complexes 432 as phosphors in monochromatic and white organic light-emitting 433 devices, Chem. Soc. Rev, issue.5, pp.43-6439, 2014.
DOI : 10.1039/c4cs00110a

N. Armaroli, Luminescent Ionic Transition-Metal Complexes for 436 Light-Emitting Electrochemical Cells, Angew. Chem., Int. Ed, vol.2012, issue.4376, pp.8178-438

I. Omae, Application of the five-membered ring blue light- 439 emitting iridium products of cyclometalation reactions as OLEDs, Coord. Chem. Rev, issue.7, pp.310-154, 2016.

E. Baranoff, J. Yum, M. Graetzel, and M. K. Nazeeruddin, Cyclometallated iridium complexes for conversion of light into electricity and electricity into light, Journal of Organometallic Chemistry, vol.694, issue.17, pp.2661-450, 2009.
DOI : 10.1016/j.jorganchem.2009.02.033

E. I. Mayo, K. Kilsa, T. Tirrell, P. I. Djurovich, A. Tamayo et al., Cyclometalated 452 iridium(iii)-sensitized titanium dioxide solar cells. Photochem. Photo- 453 biol. Sci, pp.871-454, 2006.
DOI : 10.1039/b608430c

J. Wang, W. Y. Wang, X. Y. Fang, and Y. Qiu, Carborane tuning on iridium complexes: redox-switchable second-order NLO responses, Journal of Molecular Modeling, vol.93, issue.4, pp.95-106, 2015.
DOI : 10.1063/1.459221

D. Roberto, A. Valore, M. Escadeillas, V. Guerchais, H. Le-bozec et al., Functionalized styryl iridium(III) 460 complexes as active second-order NLO chromophores and building 461 blocks for SHG polymeric films, J. Organomet. Chem, vol.459, pp.751-568, 2014.

B. Phenylpyridine, Synthesis, Photophysical Properties, 535 and Theoretical Study of Ir-Bis(benzimidazolyl)benzene Complex. 536, Inorg. Chem, vol.45, pp.8907-8939, 2006.

P. Brulatti, R. J. Gildea, J. A. Howard, V. Fattori, M. Cocchi et al., Luminescent Iridium(III) Complexes with 539 N?C?N-Coordinated Terdentate Ligands: Dual Tuning of the 540 Emission Energy and Application to Organic Light-Emitting Devices, Inorg. Chem, vol.33, pp.51-3813, 2012.

L. F. Gildea, A. S. Batsanov, and J. A. Williams, Bright orange/red-emitting rhodium(iii) and iridium(iii) complexes: tridentate N^C^N-cyclometallating ligands lead to high luminescence efficiencies, Dalton Transactions, vol.250, issue.29, pp.10388-10422, 2013.
DOI : 10.1016/j.ccr.2006.03.007

J. Kuwabara, T. Namekawa, M. A. Haga, and T. Kanbara, 547 Luminescent Ir(III) complexes containing benzothiazole-based 548 tridentate ligands: synthesis, characterization, and application to 549 organic light-emitting diodes, Dalton Trans, vol.35, pp.41-44, 2012.
DOI : 10.1039/c1dt11560j

F. Okuda, T. Harada, R. Kuroda, and M. A. Haga, Syntheses and 552 photophysical properties of optical-active blue-phosphorescent iridium 553 complexes bearing asymmetric tridentate ligands, Dalton Trans, vol.55436, pp.1700-555, 2009.

R. E. Daniels, S. Culham, M. Hunter, M. C. Durrant, M. R. Probert et al., When two are 557 better than one: bright phosphorescence from non-stereogenic 558 dinuclear iridium(III) complexes, Dalton Trans, vol.4537, pp.6949-559, 2016.
DOI : 10.1039/c6dt00881j

URL : http://pubs.rsc.org/en/content/articlepdf/2016/dt/c6dt00881j

W. Clegg, J. A. Williams, and V. N. Kozhevnikov, Ditopic bis-terdentate 561 cyclometallating ligands and their highly luminescent dinuclear 562 iridium(III) complexes, Chem. Commun, pp.50-6831, 2014.

B. F. Shi, N. Maugel, Y. H. Zhang, and J. Yu, Pd(II)-catalyzed 564 enantioselective activation of C(sp2)-H and C(sp3)-H bonds using 565 monoprotected amino acids as chiral ligands, Angew. Chem., Int. Ed, vol.566, pp.47-4882, 2008.

A. B. Maurer, T. Pintauer, and S. Bernhard, Ir(N^N^N)(C^N)L]+: a 576 new family of luminophores combining tunability and enhanced 577 photostability, Inorg. Chem, pp.53-1487, 2014.

T. Inoue, H. Takashima, and K. Tsukahara, 4?-Dimethyl-2,2?- 580 bipyridine)chloro-(2,2?:6?,2?-terpyridine)-iridium(III) hexafluorophos- 581 phate, Acta Crystallogr., Sect. E: Struct. Rep. Online, vol.4, issue.59, pp.830-873, 2003.

S. Ladouceur, D. Fortin, and E. Zysman-colman, The role of 583 substitution on the photophysical propertiesof 5,5?-diaryl-2,2?- 584 bipyridine (bpy*) in [Ir(ppy)2(bpy*)]PF6 complexes: A combined 585 experimental and theoretical study, Inorg. Chem, pp.49-5625, 2010.

I. D. Samuel and E. Zysman-colman, Solubilised bright blue-emitting 588 iridium complexes for solution processed OLEDs, J. Mater. Chem. C, vol.589, issue.445, pp.3726-590

J. J. Serrano-perez, D. Tordera, and J. A. Zampese, Thienylpyridine-based 593 cyclometallated iridium(iii) complexes and their use in solid state light- 594 emitting electrochemical cells, Dalton Trans. 2014, pp.43-738

M. Neuburger, C. E. Housecroft, and E. C. Constable, Archetype Cationic 597 Iridium Complexes and Their Use in Solid-State Light-Emitting 598 Electrochemical Cells, Adv. Funct. Mater, vol.19, pp.3456-3503, 2009.

S. Liu, Q. Zhao, Q. Fan, and W. Huang, A Series of Red- 600 Light-Emitting Ionic Iridium Complexes: Structures, Excited State 601 Properties, and Application in Electroluminescent Devices, Eur. J. 602 Inorg. Chem, pp.2177-2225, 2008.

I. Karthikeyan, D. Arunprasath, and G. Sekar, An efficient synthesis 626