H. Waldron, A brief history of scrotal cancer., Occupational and Environmental Medicine, vol.40, issue.4, pp.390-401, 1983.
DOI : 10.1136/oem.40.4.390

R. Mazzanti, U. Arena, and R. Tassi, Hepatocellular carcinoma: Where are we?, World Journal of Experimental Medicine, vol.6, issue.1, pp.21-36, 2016.
DOI : 10.5493/wjem.v6.i1.21

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4759352

W. Goodson, L. Lowe, D. Carpenter, M. Gilbertson, M. Ali et al., Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead, Carcinogenesis, vol.36, issue.Suppl 1, pp.254-96, 2015.
DOI : 10.1093/carcin/bgv039

URL : https://hal.archives-ouvertes.fr/pasteur-01352152

M. Miller, W. Goodson, M. Manjili, N. Kleinstreuer, W. Bisson et al., Low-Dose Mixture Hypothesis of Carcinogenesis Workshop: Scientific Underpinnings and Research Recommendations, Environmental Health Perspectives, vol.125, issue.2, pp.10-1289, 2016.
DOI : 10.1289/EHP411

D. Hanahan and R. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-74, 2011.
DOI : 10.1016/j.cell.2011.02.013

D. Lagadic-gossmann, L. Huc, and V. Lecureur, Alterations of intracellular pH homeostasis in apoptosis: origins and roles, Cell Death and Differentiation, vol.11, issue.9, pp.953-61, 2004.
DOI : 10.1038/sj.cdd.4401466

B. Webb, M. Chimenti, M. Jacobson, and D. Barber, Dysregulated pH: a perfect storm for cancer progression, Nature Reviews Cancer, vol.14, issue.9, pp.671-678, 2011.
DOI : 10.1038/nrc3110

S. Parks, J. Chiche, and J. Pouysségur, Disrupting proton dynamics and energy metabolism for cancer therapy, Nature Reviews Cancer, vol.3, issue.9, pp.611-634, 2013.
DOI : 10.1038/nrc3579

K. Alfarouk, D. Verduzco, C. Rauch, A. Muddathir, H. Adil et al., Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question, Oncoscience, vol.1, pp.777-802, 2014.
DOI : 10.18632/oncoscience.109

S. Reshkin, M. Greco, and R. Cardone, Role of pHi, and proton transporters in oncogene-driven neoplastic transformation, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.133, issue.29, 1638.
DOI : 10.1021/ja201930p

L. Counillon, Y. Bouret, I. Marchiq, and P. J. Na, Na+/H+ antiporter (NHE1) and lactate/H+ symporters (MCTs) in pH homeostasis and cancer metabolism, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1863, issue.10, pp.2465-80, 2016.
DOI : 10.1016/j.bbamcr.2016.02.018

J. Alexander, D. Benford, A. Cockburn, J. Cravedi, E. Dogliotti et al., Polycyclic Aromatic Hydrocarbons in Food -Scientific Opinion of the Panel on Contaminants in the Food Chain, The EFSA Journal, vol.724, pp.1-114, 2008.

J. Neal and R. Rigdon, Gastric tumors in mice fed benzo(a)pyrene: a quantitative study, Tex Rep Biol Med, vol.25, pp.553-560, 1967.

H. Brune, R. Deutsch-wenzel, M. Habs, S. Ivankovic, and D. Schmähl, Investigation of the tumorigenic response to benzo(a)pyrene in aqueous caffeine solution applied orally to Sprague-Dawley rats, Journal of Cancer Research and Clinical Oncology, vol.174, issue.2, pp.153-160, 1981.
DOI : 10.1007/BF00410666

P. Wester, J. Muller, W. Slob, G. Mohn, P. Dortant et al., Carcinogenic activity of benzo[a]pyrene in a 2 year oral study in Wistar rats, Food and Chemical Toxicology, vol.50, issue.3-4, pp.927-962, 2012.
DOI : 10.1016/j.fct.2011.12.003

B. Moorthy, C. Chu, and D. Carlin, Polycyclic Aromatic Hydrocarbons: From Metabolism to Lung Cancer, Toxicological Sciences, vol.145, issue.1
DOI : 10.1093/toxsci/kfv040

G. Falcó, J. Domingo, J. Llobet, A. Teixidó, C. Casas et al., Polycyclic Aromatic Hydrocarbons in Foods: Human Exposure through the Diet in Catalonia, Spain, Journal of Food Protection, vol.66, issue.12, pp.2325-2356, 2003.
DOI : 10.4315/0362-028X-66.12.2325

D. Phillips, Polycyclic aromatic hydrocarbons in the diet, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol.443, issue.1-2, pp.139-186, 1999.
DOI : 10.1016/S1383-5742(99)00016-2

C. Menzie, B. Potocki, and J. Santodonato, Exposure to carcinogenic PAHs in the environment, Environmental Science & Technology, vol.26, issue.7
DOI : 10.1021/es00031a002

A. Ramesh, S. Walker, D. Hood, M. Guillén, K. Schneider et al., Bioavailability and Risk Assessment of Orally Ingested Polycyclic Aromatic Hydrocarbons, International Journal of Toxicology, vol.33, issue.6, pp.301-334, 1080.
DOI : 10.1080/10915810490517063

K. Harris, L. Banks, J. Mantey, A. Huderson, and R. A. , Bioaccessibility of polycyclic aromatic hydrocarbons: relevance to toxicity and carcinogenesis, Expert Opinion on Drug Metabolism & Toxicology, vol.1, issue.11, pp.1465-80, 2013.
DOI : 10.2174/138920012803341302

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4081012

S. Goulaouic, L. Foucaud, A. Bennasroune, P. Laval-gilly, and J. Falla, Effect of Polycyclic Aromatic Hydrocarbons and Carbon Black Particles on Pro-Inflammatory Cytokine Secretion: Impact of PAH Coating Onto Particles, Journal of Immunotoxicology, vol.6, issue.3, pp.337-382, 2008.
DOI : 10.3109/01902149709087372

K. Skupi?ska, I. Misiewicz, and T. Kasprzycka-guttman, Polycyclic aromatic hydrocarbons: physicochemical properties, environmental appearance and impact on living organisms, Acta Pol Pharm, vol.61, pp.233-273, 2004.

K. Kim, S. Jahan, E. Kabir, and R. Brown, A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects, Environment International, vol.60, 2013.
DOI : 10.1016/j.envint.2013.07.019

H. Abdel-shafy and M. Mansour, A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation, Egyptian Journal of Petroleum, vol.25, issue.1, pp.107-130, 2016.
DOI : 10.1016/j.ejpe.2015.03.011

URL : http://doi.org/10.1016/j.ejpe.2015.03.011

E. Guyot, A. Chevallier, R. Barouki, and X. Coumoul, The AhR twist: ligand-dependent AhR signaling and pharmaco-toxicological implications, Drug Discovery Today, vol.18, issue.9-10, pp.479-86, 2013.
DOI : 10.1016/j.drudis.2012.11.014

C. Esser and A. Rannug, The Aryl Hydrocarbon Receptor in Barrier Organ Physiology, Immunology, and Toxicology, Pharmacological Reviews, vol.67, issue.2, pp.259-79, 2015.
DOI : 10.1124/pr.114.009001

Z. Liu, X. Wu, F. Zhang, L. Han, G. Bao et al., AhR expression is increased in hepatocellular carcinoma, Journal of Molecular Histology, vol.126, issue.3, pp.455-61, 2013.
DOI : 10.1007/s10735-013-9495-6

S. Safe, S. Lee, and U. Jin, Role of the Aryl Hydrocarbon Receptor in Carcinogenesis and Potential as a Drug Target, Toxicological Sciences, vol.135, issue.1, pp.1-16, 2013.
DOI : 10.1093/toxsci/kft128

Q. Wang and Y. Xue, Characterization of solid tumors induced by polycyclic aromatic hydrocarbons in mice, Med Sci Monit Basic Res, vol.21, pp.81-86, 2015.

Y. Nakatsuru, K. Wakabayashi, Y. Fujii-kuriyama, T. Ishikawa, K. Kusama et al., Dibenzo[A,L]pyrene-induced genotoxic and carcinogenic responses are dramatically suppressed in aryl hydrocarbon receptor-deficient mice, International Journal of Cancer, vol.95, issue.113, pp.179-83, 2004.
DOI : 10.1002/ijc.20365

T. Shimada and Y. Fujii-kuriyama, Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and1B1, Cancer Science, vol.12, issue.1, pp.1-6, 2004.
DOI : 10.1126/science.275.5297.218

T. Shimada and F. Guengerich, Inhibition of Human Cytochrome P450 1A1-, 1A2-, and 1B1-Mediated Activation of Procarcinogens to Genotoxic Metabolites by Polycyclic Aromatic Hydrocarbons, Chemical Research in Toxicology, vol.19, issue.2, pp.288-94, 2006.
DOI : 10.1021/tx050291v

C. Tomkiewicz, L. Herry, L. Bui, C. Métayer, M. Bourdeloux et al., The aryl hydrocarbon receptor regulates focal adhesion sites through a non-genomic FAK/Src pathway, Oncogene, vol.31, issue.14, pp.1811-1831, 2013.
DOI : 10.1038/onc.2012.197

J. Rey-barroso, A. Alvarez-barrientos, E. Rico-leo, M. Contador-troca, J. Carvajal-gonzalez et al., The Dioxin receptor modulates Caveolin-1 mobilization during directional migration: role of cholesterol, Cell Communication and Signaling, vol.27, issue.1, pp.57-67, 2014.
DOI : 10.1186/s12964-014-0057-7

D. Tappenden, S. Lynn, R. Crawford, K. Lee, A. Vengellur et al., The aryl hydrocarbon receptor interacts with ATP5??1, a subunit of the ATP synthase complex, and modulates mitochondrial function, Toxicology and Applied Pharmacology, vol.254, issue.3, pp.299-310, 2011.
DOI : 10.1016/j.taap.2011.05.004

H. Hwang, P. Dornbos, M. Steidemann, T. Dunivin, M. Rizzo et al., Mitochondrial-targeted aryl hydrocarbon receptor and the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin on cellular respiration and the mitochondrial proteome, Toxicology and Applied Pharmacology, vol.304, pp.121-153, 2016.
DOI : 10.1016/j.taap.2016.04.005

L. Bláha, M. Machala, J. Vondrácek, and K. Breineková, Multiple Oxidative Stress Parameters are Modulated in Vitro by Oxygenated Polycyclic Aromatic Hydrocarbons Identified in River Sediments, Adv Exp Med Biol, vol.500, pp.225-233, 2001.
DOI : 10.1007/978-1-4615-0667-6_32

W. Baird, L. Hooven, and B. Mahadevan, Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action, Environmental and Molecular Mutagenesis, vol.543, issue.2-3, 2005.
DOI : 10.1002/em.20095

N. Landvik, V. Arlt, E. Nagy, A. Solhaug, X. Tekpli et al., 3-Nitrobenzanthrone and 3-aminobenzanthrone induce DNA damage and cell signaling in Hepa1c1c7 cells, Mutat Res, vol.684, 2010.
DOI : 10.1016/j.mrfmmm.2009.11.004

T. Phillips, M. Richardson, Y. Cheng, L. He, T. Mcdonald et al., Mechanistic relationships between hepatic genotoxicity and carcinogenicity in male B6C3F1 mice treated with polycyclic aromatic hydrocarbon mixtures, Archives of Toxicology, vol.249, issue.3, pp.967-77, 2015.
DOI : 10.1007/s00204-014-1285-8

P. Rossner, S. Strapacova, J. Stolcpartova, J. Schmuczerova, A. Milcova et al., Toxic Effects of the Major Components of Diesel Exhaust in Human Alveolar Basal Epithelial Cells (A549), International Journal of Molecular Sciences, vol.46, issue.9, 2016.
DOI : 10.1006/meth.2001.1262

H. Rodriguez and E. Loechler, Mutagenesis by the (+)-anti-diol epoxide of benzo[a]pyrene: What controls mutagenic specificity?, Biochemistry, vol.32, issue.7, pp.1759-69, 1993.
DOI : 10.1021/bi00058a009

A. Conney, R. Chang, X. Cui, M. Schiltz, H. Yagi et al., Dose-Dependent Differences in the Profile of Mutations Induced by Carcinogenic (R,S,S,R) Bay-and Fjord-Region Diol Epoxides of Polycyclic Aromatic Hydrocarbons, Adv Exp Med Biol, vol.500, pp.697-707, 2001.
DOI : 10.1007/978-1-4615-0667-6_102

H. Poulsen, H. Prieme, and S. Loft, Role of oxidative DNA damage in cancer initiation and promotion

F. Henkler, J. Brinkmann, and A. Luch, The Role of Oxidative Stress in Carcinogenesis Induced by Metals and Xenobiotics, Cancers, vol.23, issue.2, pp.376-96, 2010.
DOI : 10.1021/tx00046a015

F. Henkler, K. Stolpmann, and A. Luch, Exposure to Polycyclic Aromatic Hydrocarbons: Bulky DNA Adducts and Cellular Responses, EXS, vol.101, pp.107-138, 2012.
DOI : 10.1007/978-3-7643-8340-4_5

T. Rich, R. Allen, and A. Wyllie, Defying death after DNA damage, Nature, vol.407, pp.777-83, 2000.

R. Leboeuf, G. Kerckaert, M. Aardema, D. Gibson, R. Brauninger et al., The pH 6.7 Syrian hamster embryo cell transformation assay for assessing the carcinogenic potential of chemicals, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.356, issue.1, pp.85-127, 1996.
DOI : 10.1016/0027-5107(95)00199-9

R. Leboeuf, P. Lin, G. Kerckaert, and E. Gruenstein, Intracellular acidification is associated with enhanced morphological transformation in Syrian hamster embryo cells, Cancer Res, vol.52, pp.144-152, 1992.

T. Shimada, Xenobiotic-Metabolizing Enzymes Involved in Activation and Detoxification of Carcinogenic Polycyclic Aromatic Hydrocarbons, Drug Metabolism and Pharmacokinetics, vol.21, issue.4, pp.257-76, 2006.
DOI : 10.2133/dmpk.21.257

W. Ying, S. Han, J. Miller, and R. Swanson, Acidosis Potentiates Oxidative Neuronal Death by Multiple Mechanisms, Journal of Neurochemistry, vol.77, issue.4, pp.1549-56, 1999.
DOI : 10.1046/j.1471-4159.1999.0731549.x

T. Pekun, S. Hrynevich, T. Waseem, and S. Fedorovich, Role of iron, zinc and reduced glutathione in oxidative stress induction by low pH in rat brain synaptosomes, SpringerPlus, vol.3, issue.1, pp.560-570, 2014.
DOI : 10.1038/nrn1537

A. Goldman, M. Shahidullah, D. Goldman, L. Khailova, G. Watts et al., A novel mechanism of acid and bile acid-induced DNA damage involving Na+/H+ exchanger: implication for Barrett's oesophagus, Gut, vol.59, issue.12, pp.1606-1622, 2010.
DOI : 10.1136/gut.2010.213686

C. Boström, P. Gerde, A. Hanberg, B. Jernström, C. Johansson et al., Cancer Risk Assessment, Indicators, and Guidelines for Polycyclic Aromatic Hydrocarbons in the Ambient Air, Environmental Health Perspectives, vol.110, issue.s3, pp.451-88, 2002.
DOI : 10.1289/ehp.02110s3451

G. Bergers, D. Hanahan, and L. Coussens, Angiogenesis and apoptosis are cellular parameters of neoplastic progression in transgenic mouse models of tumorigenesis, Int J Dev Biol, vol.42, pp.995-1002, 1998.

P. Oliveira, A. Colaço, R. Chaves, H. Guedes-pinto, P. De-la-cruz et al., Chemical carcinogenesis, Anais da Academia Brasileira de Ci??ncias, vol.79, issue.4, pp.593-616, 2007.
DOI : 10.1590/S0001-37652007000400004

S. Yang, S. Jenq, Z. Kang, and H. Lee, ]pyrene 7,8-Diol 9,10-Epoxide N2-Deoxyguanosine in Human Lung Adenocarcinoma Cells Exposed to Cooking Oil Fumes from Frying Fish under Domestic Conditions, Chemical Research in Toxicology, vol.13, issue.10, pp.1046-50, 2000.
DOI : 10.1021/tx0000419

S. Chen, L. Wang, R. Lunn, W. Tsai, P. Lee et al., Polycyclic aromatic hydrocarbon-DNA adducts in liver tissues of hepatocellular carcinoma patients and controls, International Journal of Cancer, vol.24, issue.1, pp.14-21, 2002.
DOI : 10.1002/ijc.10291

P. Hodek, J. Koblihová, R. Kizek, E. Frei, V. Arlt et al., The relationship between DNA adduct formation by benzo[a]pyrene and expression of its activation enzyme cytochrome P450 1A1 in rat, Environmental Toxicology and Pharmacology, vol.36, issue.3, pp.989-96, 2013.
DOI : 10.1016/j.etap.2013.09.004

Y. Su, B. Zhao, F. Guo, Z. Bin, Y. Yang et al., Interaction of benzo[a]pyrene with other risk factors in hepatocellular carcinoma: a case-control study in Xiamen, China, Annals of Epidemiology, vol.24, issue.2, pp.98-103, 2014.
DOI : 10.1016/j.annepidem.2013.10.019

M. Rojas, M. B. Vignaud, J. Martinet, N. Siat, J. Grosdidier et al., High DNA damage by benzo[a]pyrene 7,8-diol-9,10-epoxide in bronchial epithelial cells from patients with lung cancer: comparison with lung parenchyma, Cancer Letters, vol.207, issue.2, pp.157-63, 2004.
DOI : 10.1016/j.canlet.2003.11.016

A. Puisieux, S. Lim, J. Groopman, and M. Ozturk, Selective targeting of p53 gene mutational hotspots in human cancers by etiologically defined carcinogens, Cancer Res, vol.51, pp.6185-6194, 1991.

P. Cherpillod and P. Amstad, Benzo[a]pyrene-induced mutagenesis ofp53 hot-spot codons 248 and 249 in human hepatocytes, Molecular Carcinogenesis, vol.342, issue.1, pp.15-20, 1995.
DOI : 10.1002/mc.2940130104

M. Denissenko, A. Pao, M. Tang, and G. Pfeifer, Preferential Formation of Benzo[a]pyrene Adducts at Lung Cancer Mutational Hotspots in P53, Science, vol.274, issue.5286, pp.430-432, 1996.
DOI : 10.1126/science.274.5286.430

G. Menzies, S. Reed, A. Brancale, and P. Lewis, mutation hotspots: a molecular dynamics study of benzo[a]pyrene induced DNA distortion and mutability, Nucleic Acids Research, vol.43, issue.19, pp.9133-9179, 2015.
DOI : 10.1093/nar/gkv910

J. Backer and I. Weinstein, Interaction of benzo(a)pyrene and its dihydrodiol-epoxide derivative with nuclear and mitochondrial DNA in C3H10T 1/2 cell cultures, Cancer Res, vol.42, pp.2764-2773, 1982.

S. Bansal, A. Leu, F. Gonzalez, F. Guengerich, A. Chowdhury et al., Mitochondrial Targeting of Cytochrome P450 (CYP) 1B1 and Its Role in Polycyclic Aromatic Hydrocarbon-induced Mitochondrial Dysfunction, Journal of Biological Chemistry, vol.289, issue.14, pp.9936-51, 2014.
DOI : 10.1074/jbc.M113.525659

N. Larsen, M. Rasmussen, and L. Rasmussen, Nuclear and mitochondrial DNA repair: similar pathways?, Mitochondrion, vol.5, issue.2, pp.89-108, 2005.
DOI : 10.1016/j.mito.2005.02.002

W. Valente, N. Ericson, A. Long, P. White, and F. Marchetti, Mitochondrial DNA exhibits resistance to induced point and deletion mutations, Nucleic Acids Research, vol.44, issue.18, 2016.
DOI : 10.1093/nar/gkw716

URL : http://doi.org/10.1093/nar/gkw716

L. Zhang, J. Y. Huang, M. Penning, and T. , The Role of Human Aldo-Keto Reductases in the Metabolic Activation and Detoxication of Polycyclic Aromatic Hydrocarbons: Interconversion of PAH Catechols and PAH o-Quinones, Frontiers in Pharmacology, vol.3, 2012.
DOI : 10.3389/fphar.2012.00193

E. Cavalieri and E. Rogan, Central role of radical cations in metabolic activation of polycyclic aromatic hydrocarbons, Xenobiotica, vol.49, issue.7, pp.677-88, 1995.
DOI : 10.1080/10406639008034749

S. Sen, P. Bhojnagarwala, L. Francey, D. Lu, T. Penning et al., ]pyrene Derived Radical Cations, Chemical Research in Toxicology, vol.25, issue.10, pp.2117-2143, 2012.
DOI : 10.1021/tx300201p

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3650728

M. Reed, M. Monske, F. Lauer, S. Meserole, J. Born et al., Benzo[a]Pyrene Diones are Produced by Photochemical and Enzymatic Oxidation and Induce Concentration-Dependent Decreases in the Proliferative State of Human Pulmonary Epithelial Cells, Journal of Toxicology and Environmental Health, Part A, vol.35, issue.13, pp.1189-205, 2003.
DOI : 10.1016/0003-9861(91)90417-H

M. Venkatraman, D. Konga, R. Peramaiyan, E. Ganapathy, and S. Dhanapal, Reduction of Mitochondrial Oxidative Damage and Improved Mitochondrial Efficiency by Administration of Crocetin against Benzo[a]pyrene Induced Experimental Animals, Biological & Pharmaceutical Bulletin, vol.31, issue.9, pp.1639-1684, 2008.
DOI : 10.1248/bpb.31.1639

B. Lee, S. Kwack, and H. Kim, Age-related Changes in Oxidative DNA Damage and Benzo(a)pyrene Diolepoxide-I (BPDE-I)-DNA Adduct Levels in Human Stomach, Journal of Toxicology and Environmental Health, Part A, vol.122, issue.19, pp.1599-610, 1080.
DOI : 10.1016/S0278-6915(02)00044-3

R. Isabel, G. Sandra, V. Rafael, M. Carmen, C. Josefina et al., to polycyclic aromatic hydrocarbons with or without animal metabolic activation, Toxicology Mechanisms and Methods, vol.9, issue.4, pp.170-83, 2012.
DOI : 10.1021/tx00034a028

C. Genies, A. Maître, E. Lefèbvre, A. Jullien, M. Chopard-lallier et al., The Extreme Variety of Genotoxic Response to Benzo[a]pyrene in Three Different Human Cell Lines from Three Different Organs, PLoS ONE, vol.50, issue.11, 2013.
DOI : 10.1371/journal.pone.0078356.s005

S. Park, S. Lee, S. Ye, S. Yoon, M. Chung et al., Benzo[a]pyrene-induced DNA damage and p53 modulation in human hepatoma HepG2 cells for the identification of potential biomarkers for PAH monitoring and risk assessment, Toxicology Letters, vol.167, issue.1, pp.27-33, 2006.
DOI : 10.1016/j.toxlet.2006.08.011

A. Solhaug, M. Refsnes, M. Låg, P. Schwarze, T. Husøy et al., Polycyclic aromatic hydrocarbons induce both apoptotic and anti-apoptotic signals in Hepa1c1c7 cells, Carcinogenesis, vol.25, issue.5, pp.809-828, 2004.
DOI : 10.1093/carcin/bgh069

A. Solhaug, M. Refsnes, and J. Holme, Role of cell signalling involved in induction of apoptosis by benzo[a]pyrene and cyclopenta[c,d]pyrene in Hepa1c1c7 cells, Journal of Cellular Biochemistry, vol.87, issue.6, pp.1143-54, 2004.
DOI : 10.1002/jcb.20251

L. Huc, M. Rissel, A. Solhaug, X. Tekpli, M. Gorria et al., Multiple apoptotic pathways induced by p53-dependent acidification in benzo[a]pyrene-exposed hepatic F258 cells, Journal of Cellular Physiology, vol.2, issue.3, pp.527-564, 2006.
DOI : 10.1002/jcp.20686

URL : https://hal.archives-ouvertes.fr/inserm-00130324

H. Xiao and S. Singh, p53 Regulates Cellular Responses to Environmental Carcinogen Benzo[a]pyrene-7,8-diol-9,10-epoxide in Human Lung Cancer Cells, Cell Cycle, vol.6, issue.14, pp.1753-61, 2007.
DOI : 10.4161/cc.6.14.4430

B. Banerjee, S. Chakraborty, D. Ghosh, S. Raha, P. Sen et al., Benzo(a)pyrene Induced p53 Mediated Male Germ Cell Apoptosis: Synergistic Protective Effects of Curcumin and Resveratrol, Frontiers in Pharmacology, vol.24, issue.e93820, 2016.
DOI : 10.1111/j.1530-0277.2000.tb04574.x

M. Wani, Q. Zhu, M. El-mahdy, S. Venkatachalam, and A. Wani, Enhanced sensitivity to antibenzo(a )pyrene-diol-epoxide DNA damage correlates with decreased global genomic repair attributable to abrogated p53 function in human cells, Cancer Res, vol.60, pp.2273-80, 2000.

Y. Jiang, X. Chen, G. Yang, Q. Wang, J. Wang et al., BaP-induced DNA damage initiated p53-independent necroptosis via the mitochondrial pathway involving Bax and Bcl-2, Human & Experimental Toxicology, vol.63, issue.12, pp.1245-57, 2013.
DOI : 10.1016/j.cell.2010.03.053

W. Zhang, N. Liu, X. Wang, J. X. Du, H. Peng et al., Benzo(a)pyrene-7,8-diol-9,10-epoxide induced p53-independent necrosis via the mitochondria-associated pathway involving Bax and Bak activation, Human & Experimental Toxicology, vol.34, issue.2, pp.179-90, 1177.
DOI : 10.1177/0960327114533358

L. Huc, L. Sparfel, M. Rissel, M. Dimanche-boitrel, A. Guillouzo et al., Identification of Na+/H+ exchange as a new target for toxic polycyclic aromatic hydrocarbons in liver cells, The FASEB Journal, vol.18, pp.344-350, 2004.
DOI : 10.1096/fj.03-0316fje

L. Huc, X. Tekpli, J. Holme, M. Rissel, A. Solhaug et al., c-Jun NH2-Terminal Kinase-Related Na+/H+ Exchanger Isoform 1 Activation Controls Hexokinase II Expression in Benzo(a)Pyrene-Induced Apoptosis, Cancer Research, vol.67, issue.4, pp.1696-705, 2007.
DOI : 10.1158/0008-5472.CAN-06-2327

URL : https://hal.archives-ouvertes.fr/hal-00690320

T. Lin and M. Yang, Benzo[a]pyrene-induced necrosis in the HepG2 cells via PARP-1 activation and NAD+ depletion, Toxicology, vol.245, issue.1-2, pp.147-53, 2008.
DOI : 10.1016/j.tox.2007.12.020

Y. Jiang, X. Zhou, X. Chen, G. Yang, Q. Wang et al., Benzo(a)pyrene-induced mitochondrial dysfunction and cell death in p53-null Hep3B cells, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol.726, issue.1, pp.75-83, 2011.
DOI : 10.1016/j.mrgentox.2011.08.006

W. Lei, R. Yu, S. Mandlekar, and A. Kong, Induction of apoptosis and activation of interleukin 1beta- converting enzyme/Ced-3 protease (caspase-3) and c-Jun NH2-terminal kinase 1 by benzo(a)pyrene, Cancer Res, vol.58, pp.2102-2108, 1998.

C. Ko, S. Kim, C. Park, B. Kim, C. Shin et al., Benzo(a)pyrene-induced apoptotic death of mouse hepatoma Hepa1c1c7 cells via activation of intrinsic caspase cascade and mitochondrial dysfunction, Toxicology, vol.199, issue.1, pp.35-46, 2004.
DOI : 10.1016/j.tox.2004.01.039

J. Holme, M. Gorria, V. Arlt, S. Ovrebø, A. Solhaug et al., Different mechanisms involved in apoptosis following exposure to benzo[a]pyrene in F258 and Hepa1c1c7 cells, Chemico-Biological Interactions, vol.167, issue.1, pp.41-55, 2007.
DOI : 10.1016/j.cbi.2007.01.008

URL : https://hal.archives-ouvertes.fr/hal-00690306

B. Dendelé, X. Tekpli, O. Sergent, M. Dimanche-boitrel, J. Holme et al., Identification of the couple GSK3??/c-Myc as a new regulator of hexokinase II in benzo[a]pyrene-induced apoptosis, Toxicology in Vitro, vol.26, issue.1, pp.94-101, 2012.
DOI : 10.1016/j.tiv.2011.11.001

J. Chen, F. Chou, H. Lin, and C. Wang, Gaseous nitrogen oxide repressed benzo[a]pyrene-induced human lung fibroblast cell apoptosis via inhibiting JNK1 signals, Archives of Toxicology, vol.101, issue.12, pp.694-704, 2005.
DOI : 10.1007/s00204-005-0001-0

K. Stolpmann, J. Brinkmann, S. Salzmann, D. Genkinger, E. Fritsche et al., Activation of the aryl hydrocarbon receptor sensitises human keratinocytes for CD95L- and TRAIL-induced apoptosis, Cell Death and Disease, vol.129, issue.9, 2012.
DOI : 10.1038/cddis.2012.127

I. Salazar, M. Pavani, W. Aranda, J. Maya, A. Morello et al., Alterations of rat liver mitochondrial oxidative phosphorylation and calcium uptake by benzo[a]pyrene, Toxicology and Applied Pharmacology, vol.198, issue.1, 2004.
DOI : 10.1016/j.taap.2004.02.013

M. Gorria, L. Huc, O. Sergent, A. Rebillard, F. Gaboriau et al., Protective effect of monosialoganglioside GM1 against chemically induced apoptosis through targeting of mitochondrial function and iron transport, Biochemical Pharmacology, vol.72, issue.10, pp.1343-53, 2006.
DOI : 10.1016/j.bcp.2006.07.014

URL : https://hal.archives-ouvertes.fr/hal-00699820

M. Gorria, X. Tekpli, M. Rissel, O. Sergent, L. Huc et al., A new lactoferrin- and iron-dependent lysosomal death pathway is induced by benzo[a]pyrene in hepatic epithelial cells, Toxicology and Applied Pharmacology, vol.228, issue.2, pp.212-236, 2008.
DOI : 10.1016/j.taap.2007.12.021

URL : https://hal.archives-ouvertes.fr/hal-00674390

A. Collin, K. Hardonnière, M. Chevanne, J. Vuillemin, and N. Podechard, Cooperative interaction of benzo[a]pyrene and ethanol on plasma membrane remodeling is responsible for enhanced oxidative stress and cell death in primary rat hepatocytes, Free Radical Biology and Medicine, vol.72, pp.11-22, 2014.
DOI : 10.1016/j.freeradbiomed.2014.03.029

URL : https://hal.archives-ouvertes.fr/hal-01018147

G. Ichim and S. Tait, A fate worse than death: apoptosis as an oncogenic process, Nature Reviews Cancer, vol.5, issue.8, pp.539-587, 2016.
DOI : 10.1038/nrc.2016.58

A. Burdick, I. Ivnitski-steele, F. Lauer, and S. Burchiel, PYK2 mediates anti-apoptotic AKT signaling in response to benzo[a]pyrene diol epoxide in mammary epithelial cells, Carcinogenesis, vol.27, issue.11, pp.2331-2371, 2006.
DOI : 10.1093/carcin/bgl083

N. Nigam, J. George, S. Srivastava, P. Roy, K. Bhui et al., Induction of apoptosis by [6]-gingerol associated with the modulation of p53 and involvement of mitochondrial signaling pathway in B[a]P-induced mouse skin tumorigenesis, Cancer Chemotherapy and Pharmacology, vol.13, issue.4, pp.687-96, 2010.
DOI : 10.1007/s00280-009-1074-x

S. Hockley, V. Arlt, D. Brewer, I. Giddings, and D. Phillips, Time-and concentration-dependent changes in gene expression induced by benzo(a)pyrene in two human cell lines, MCF-7 and HepG2, BMC Genomics, vol.7, issue.1, pp.260-270, 1471.
DOI : 10.1186/1471-2164-7-260

A. Kch, H. Gogas, K. Polonifi, A. Vaiopoulos, A. Polyzos et al., Survivin beyond physiology: orchestration of multistep carcinogenesis and therapeutic potentials, Cancer Lett, vol.347, pp.175-82, 2014.

V. Fetz, C. Bier, N. Habtemichael, R. Schuon, A. Schweitzer et al., Inducible NO synthase confers chemoresistance in head and neck cancer by modulating survivin, International Journal of Cancer, vol.8, issue.9, pp.2033-2074, 2009.
DOI : 10.1002/ijc.24182

K. Hardonnière, L. Huc, N. Podechard, M. Fernier, X. Tekpli et al., Benzo[a]pyrene-induced nitric oxide production acts as a survival signal targeting mitochondrial membrane potential, Toxicology in Vitro, vol.29, issue.7, pp.1597-608, 2015.
DOI : 10.1016/j.tiv.2015.06.010

B. Heerdt, M. Houston, and L. Augenlicht, Growth Properties of Colonic Tumor Cells Are a Function of the Intrinsic Mitochondrial Membrane Potential, Cancer Research, vol.66, issue.3, pp.1591-1597, 2006.
DOI : 10.1158/0008-5472.CAN-05-2717

K. Hardonnière, E. Saunier, A. Lemarié, M. Fernier, I. Gallais et al., The environmental carcinogen benzo[a]pyrene induces a Warburg-like metabolic reprogramming dependent on NHE1 and associated with cell survival, Scientific Reports, vol.34, issue.1, pp.30776-30786, 2016.
DOI : 10.1038/onc.2014.321

K. Patra and N. Hay, The pentose phosphate pathway and cancer, Trends in Biochemical Sciences, vol.39, issue.8, pp.347-54, 2014.
DOI : 10.1016/j.tibs.2014.06.005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4329227

V. Payen, P. Porporato, B. Baselet, and P. Sonveaux, Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and the pentose phosphate pathway, Cellular and Molecular Life Sciences, vol.34, issue.Pt 6, pp.1333-1381, 2016.
DOI : 10.1007/s00018-015-2098-5

R. Nault, K. Fader, M. Kirby, S. Ahmed, J. Matthews et al., -Dioxin, Toxicological Sciences, vol.149, issue.2, pp.358-71, 2016.
DOI : 10.1093/toxsci/kfv245

URL : https://hal.archives-ouvertes.fr/hal-00850217

T. Souza, D. Jennen, J. Van-delft, M. Van-herwijnen, S. Kyrtoupolos et al., New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis, Archives of Toxicology, vol.14, issue.6, pp.1449-58, 2016.
DOI : 10.1007/s00204-015-1572-z

J. Niestroy, A. Barbara, K. Herbst, S. Rode, M. Van-liempt et al., Single and concerted effects of benzo[a]pyrene and flavonoids on the AhR and Nrf2-pathway in the human colon carcinoma cell line Caco-2, Toxicology in Vitro, vol.25, issue.3, pp.671-83, 2011.
DOI : 10.1016/j.tiv.2011.01.008

R. Surya, C. Héliès-toussaint, O. Martin, T. Gauthier, F. Guéraud et al., Red meat and colorectal cancer: Nrf2-dependent antioxidant response contributes to the resistance of preneoplastic colon cells to fecal water of hemoglobin- and beef-fed rats, Carcinogenesis, vol.37, issue.6, pp.635-680, 2016.
DOI : 10.1093/carcin/bgw035

S. Menegon, A. Columbano, and S. Giordano, The Dual Roles of NRF2 in Cancer, Trends in Molecular Medicine, vol.22, issue.7, pp.578-93, 2016.
DOI : 10.1016/j.molmed.2016.05.002

D. Chartoumpekis, N. Wakabayashi, and T. Kensler, Keap1/Nrf2 pathway in the frontiers of cancer and non-cancer cell metabolism, Biochemical Society Transactions, vol.43, issue.4, pp.639-683, 2015.
DOI : 10.1042/BST20150049

X. Tekpli, E. Rivedal, M. Gorria, N. Landvik, M. Rissel et al., The B[a]P-increased intercellular communication via translocation of connexin-43 into gap junctions reduces apoptosis, Toxicology and Applied Pharmacology, vol.242, issue.2, pp.231-271, 2010.
DOI : 10.1016/j.taap.2009.10.012

URL : https://hal.archives-ouvertes.fr/hal-00660130

J. Trosko, C. Chang, B. Upham, and M. Tai, Ignored Hallmarks of Carcinogenesis: Stem Cells and Cell-Cell Communication, Annals of the New York Academy of Sciences, vol.1028, issue.1, 2004.
DOI : 10.1196/annals.1322.023

L. Bláha, P. Kapplová, J. Vondrácek, B. Upham, and M. Machala, Inhibition of Gap-Junctional Intercellular Communication by Environmentally Occurring Polycyclic Aromatic Hydrocarbons, Toxicological Sciences, vol.65, issue.1, pp.43-51, 2002.
DOI : 10.1093/toxsci/65.1.43

J. Topinka, S. Marvanová, J. Vondrácek, O. Sevastyanova, Z. Nováková et al., DNA adducts formation and induction of apoptosis in rat liver epithelial ???stem-like??? cells exposed to carcinogenic polycyclic aromatic hydrocarbons, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.638, issue.1-2, pp.122-154, 2008.
DOI : 10.1016/j.mrfmmm.2007.09.004

Y. Wei, L. Zhao, W. He, J. Yang, C. Geng et al., Benzo[a]pyrene promotes gastric cancer cell proliferation and metastasis likely through the Aryl hydrocarbon receptor and ERK-dependent induction of MMP9 and c-myc, International Journal of Oncology, 2016.
DOI : 10.3892/ijo.2016.3674

O. Mavrofrydi, P. Mavroeidi, and P. Papazafiri, Comparative assessment of HIF-1?? and Akt responses in human lung and skin cells exposed to benzo[??]pyrene: Effect of conditioned medium from pre-exposed primary fibroblasts, Environmental Toxicology, vol.279, issue.9, pp.1103-1115, 2016.
DOI : 10.1002/tox.22119

A. Burdick, J. Davis, K. Liu, L. Hudson, H. Shi et al., Benzo(a)pyrene quinones increase cell proliferation, generate reactive oxygen species, and transactivate the epidermal growth factor receptor in breast epithelial cells, Cancer Res, vol.63, pp.7825-7858, 2003.

M. Plísková, J. Vondrácek, B. Vojtesek, A. Kozubík, and M. Machala, Deregulation of Cell Proliferation by Polycyclic Aromatic Hydrocarbons in Human Breast Carcinoma MCF-7 Cells Reflects Both Genotoxic and Nongenotoxic Events, Toxicological Sciences, vol.83, issue.2, pp.246-56, 2005.
DOI : 10.1093/toxsci/kfi040

T. Kometani, I. Yoshino, N. Miura, H. Okazaki, T. Ohba et al., Benzo[a]pyrene promotes proliferation of human lung cancer cells by accelerating the epidermal growth factor receptor signaling pathway, Cancer Letters, vol.278, issue.1, pp.27-33, 2009.
DOI : 10.1016/j.canlet.2008.12.017

K. Chramostová, J. Vondrácek, L. Sindlerová, B. Vojtesek, A. Kozubík et al., Polycyclic aromatic hydrocarbons modulate cell proliferation in rat hepatic epithelial stem-like WB-F344 cells, Toxicology and Applied Pharmacology, vol.196, issue.1
DOI : 10.1016/j.taap.2003.12.008

Z. Andrysík, J. Vondrácek, M. Machala, P. Krcmár, L. Svihálková-sindlerová et al., The aryl hydrocarbon receptor-dependent deregulation of cell cycle control induced by polycyclic aromatic hydrocarbons in rat liver epithelial cells, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.615, issue.1-2, pp.87-97, 2007.
DOI : 10.1016/j.mrfmmm.2006.10.004

J. Vondrá?ek and M. Machala, Environmental Ligands of the Aryl Hydrocarbon Receptor and Their Effects in Models of Adult Liver Progenitor Cells, Stem Cells International, vol.61, issue.8, pp.4326194-4326204, 2016.
DOI : 10.1016/j.mrfmmm.2008.02.001

M. Huber, N. Kraut, and H. Beug, Molecular requirements for epithelial???mesenchymal transition during tumor progression, Current Opinion in Cell Biology, vol.17, issue.5, pp.548-58, 2005.
DOI : 10.1016/j.ceb.2005.08.001

I. Yoshino, T. Kometani, F. Shoji, A. Osoegawa, T. Ohba et al., Induction of epithelial-mesenchymal transition-related genes by benzo[a]pyrene in lung cancer cells, Cancer, vol.32, issue.2, pp.369-74, 2007.
DOI : 10.1002/cncr.22728

Q. Ba, J. Li, C. Huang, H. Qiu, J. Li et al., Effects of Benzo[a]pyrene Exposure on Human Hepatocellular Carcinoma Cell Angiogenesis, Metastasis, and NF-??B Signaling, Environmental Health Perspectives, vol.123, pp.246-54, 2015.
DOI : 10.1289/ehp.1408524

R. Dong, Q. Wang, X. He, Y. Chu, J. Lu et al., Role of nuclear factor kappa B and reactive oxygen species in the tumor necrosis factor-a-induced epithelial-mesenchymal transition of MCF-7 cells, Brazilian Journal of Medical and Biological Research, vol.40, issue.8, pp.1071-1079, 2007.
DOI : 10.1590/S0100-879X2007000800007

M. Song, Y. Kim, M. Song, H. Choi, Y. Park et al., Polycyclic aromatic hydrocarbons induce migration in human hepatocellular carcinoma cells (HepG2) through reactive oxygen species-mediated p38 MAPK signal transduction, Cancer Science, vol.112, issue.9, pp.1636-1680, 2011.
DOI : 10.1111/j.1349-7006.2011.02000.x

R. Barouki and X. Coumoul, Cell migration and metastasis markers as targets of environmental pollutants and the Aryl hydrocarbon receptor, Cell Adhesion & Migration, vol.28, issue.1, pp.72-78, 2010.
DOI : 10.1016/j.bcp.2008.08.032

R. Castillo-sanchez, S. Villegas-comonfort, O. Galindo-hernandez, R. Gomez, and E. Salazar, Benzo-[a]-pyrene induces FAK activation and cell migration in MDA-MB-231 breast cancer cells, Cell Biology and Toxicology, vol.63, issue.11, pp.303-322, 2013.
DOI : 10.1007/s10565-013-9254-1

R. Palmirotta, M. Cives, D. Della-morte, B. Capuani, D. Lauro et al., Sirtuins and Cancer: Role in the Epithelial-Mesenchymal Transition, Oxidative Medicine and Cellular Longevity, vol.13, issue.3, pp.3031459-3031469, 2016.
DOI : 10.1038/onc.2013.120

X. Ye, M. Li, T. Hou, T. Gao, W. Zhu et al., Sirtuins in glucose and lipid metabolism, Oncotarget, 2016.
DOI : 10.18632/oncotarget.12157

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5352102

J. Lu, M. Zhang, Z. Huang, S. Sun, Y. Zhang et al., SIRT1 in B[a]P-induced lung tumorigenesis, Oncotarget, vol.6, issue.29, pp.27113-27142, 2015.
DOI : 10.18632/oncotarget.4729

A. Bersaas, Y. Arnoldussen, M. Sjøberg, A. Haugen, and S. Mollerup, Epithelial-mesenchymal transition and FOXA genes during tobacco smoke carcinogen induced transformation of human bronchial epithelial cells, Toxicology in Vitro, vol.35, pp.55-65, 2016.
DOI : 10.1016/j.tiv.2016.04.012

N. Podechard, V. Lecureur, L. Ferrec, E. Guenon, I. Sparfel et al., Interleukin-8 induction by the environmental contaminant benzo(a)pyrene is aryl hydrocarbon receptor-dependent and leads to lung inflammation, Toxicology Letters, vol.177, issue.2, pp.130-137, 2008.
DOI : 10.1016/j.toxlet.2008.01.006

URL : https://hal.archives-ouvertes.fr/hal-00673238

A. Shahid, R. Ali, N. Ali, S. Hasan, S. Rashid et al., Abstract, Journal of Complementary and Integrative Medicine, vol.13, issue.1, pp.17-29, 2016.
DOI : 10.1515/jcim-2015-0078

L. Sparfel, M. Pinel-marie, M. Boize, S. Koscielny, S. Desmots et al., Transcriptional Signature of Human Macrophages Exposed to the Environmental Contaminant Benzo(a)pyrene, Toxicological Sciences, vol.114, issue.2
DOI : 10.1093/toxsci/kfq007

URL : https://hal.archives-ouvertes.fr/hal-00657921

K. Zaccaria and P. Mcclure, Using Immunotoxicity Information to Improve Cancer Risk Assessment for Polycyclic Aromatic Hydrocarbon Mixtures, International Journal of Toxicology, vol.43, issue.3739, pp.236-50, 2013.
DOI : 10.1177/1091581813492829

L. Huc, X. Tekpli, A. Rebillard, M. Dimanche-boitrel, and D. Lagadic-gossmann, Role for NHE1 in chemically-induced apoptosis, Proton homeostasis and cell death, pp.65-81, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00682523

X. Tekpli, M. Rissel, L. Huc, D. Catheline, O. Sergent et al., Membrane remodeling, an early event in benzo[??]pyrene-induced apoptosis, Toxicology and Applied Pharmacology, vol.243, issue.1, pp.68-76, 2010.
DOI : 10.1016/j.taap.2009.11.014

URL : https://hal.archives-ouvertes.fr/hal-00729575

X. Tekpli, L. Huc, O. Sergent, B. Dendelé, M. Dimanche-boitrel et al., NHE-1 Relocation Outside Cholesterol-rich Membrane Microdomains is Associated with its Benzo[a]pyrene-related Apoptotic Function, Cellular Physiology and Biochemistry, vol.29, issue.5-6, pp.657-66, 2012.
DOI : 10.1159/000171027

URL : https://hal.archives-ouvertes.fr/inserm-00871487

Z. Cao, H. Fan-minogue, D. Bellovin, A. Yevtodiyenko, J. Arzeno et al., MYC Phosphorylation, Activation, and Tumorigenic Potential in Hepatocellular Carcinoma Are Regulated by HMG-CoA Reductase, Cancer Research, vol.71, issue.6, pp.2286-97, 2011.
DOI : 10.1158/0008-5472.CAN-10-3367

F. Morrish, N. Isern, M. Sadilek, M. Jeffrey, and D. Hockenbery, c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry, Oncogene, vol.7, issue.27, pp.2485-91, 2009.
DOI : 10.1073/pnas.0604129103

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779836

A. Hsieh, Z. Walton, B. Altman, Z. Stine, and C. Dang, MYC and metabolism on the path to cancer, Seminars in Cell & Developmental Biology, vol.43, pp.11-21, 2015.
DOI : 10.1016/j.semcdb.2015.08.003

N. Majewski, V. Nogueira, R. Robey, and N. Hay, Akt Inhibits Apoptosis Downstream of BID Cleavage via a Glucose-Dependent Mechanism Involving Mitochondrial Hexokinases, Molecular and Cellular Biology, vol.24, issue.2, pp.730-770, 2004.
DOI : 10.1128/MCB.24.2.730-740.2004

S. Kotliarova, S. Pastorino, L. Kovell, Y. Kotliarov, H. Song et al., Glycogen Synthase Kinase-3 Inhibition Induces Glioma Cell Death through c-MYC, Nuclear Factor-??B, and Glucose Regulation, Cancer Research, vol.68, issue.16, pp.6643-51, 2008.
DOI : 10.1158/0008-5472.CAN-08-0850

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2585745

M. Baumgartner, H. Patel, D. Barber, and . Na, Na+/H+ exchanger NHE1 as plasma membrane scaffold in the assembly of signaling complexes, AJP: Cell Physiology, vol.287, issue.4, pp.844-50, 2004.
DOI : 10.1152/ajpcell.00094.2004

K. Wu, S. Khan, S. Lakhe-reddy, G. Jarad, A. Mukherjee et al., The NHE1 Na+/H+ Exchanger Recruits Ezrin/Radixin/Moesin Proteins to Regulate Akt-dependent Cell Survival, Journal of Biological Chemistry, vol.279, issue.25, pp.26280-26286, 2004.
DOI : 10.1074/jbc.M400814200

C. Mitsiades, N. Mitsiades, and M. Koutsilieris, The Akt Pathway: Molecular Targets for Anti-Cancer Drug Development, Current Cancer Drug Targets, vol.4, issue.3, pp.235-56, 2004.
DOI : 10.2174/1568009043333032

E. Peixoto, A. Papadimitriou, D. Teixeira, C. Montemurro, D. Duarte et al., Reduced LRP6 expression and increase in the interaction of GSK3?? with p53 contribute to podocyte apoptosis in diabetes mellitus and are prevented by green tea, The Journal of Nutritional Biochemistry, vol.26, issue.4, pp.416-446, 2015.
DOI : 10.1016/j.jnutbio.2014.11.012

S. Altairac, S. Zeggai, P. Perani, Y. Courtois, and A. Torriglia, Apoptosis induced by Na+/H+ antiport inhibition activates the LEI/L-DNase II pathway, Cell Death and Differentiation, vol.10, issue.5, pp.548-57, 2003.
DOI : 10.1038/sj.cdd.4401195

M. Gorria, X. Tekpli, O. Sergent, L. Huc, F. Gaboriau et al., Membrane Fluidity Changes Are Associated with Benzo[a]Pyrene-Induced Apoptosis in F258 Cells: Protection by Exogenous Cholesterol, Annals of the New York Academy of Sciences, vol.18, issue.1, pp.108-120, 2006.
DOI : 10.1016/S0300-9084(02)01369-X

URL : https://hal.archives-ouvertes.fr/hal-00699948

M. Meima, J. Mackley, and D. Barber, Beyond ion translocation: structural functions of the sodium???hydrogen exchanger isoform-1, Current Opinion in Nephrology and Hypertension, vol.16, issue.4, pp.365-72, 2007.
DOI : 10.1097/MNH.0b013e3281bd888d

C. Astarie, L. Q. Sang, K. David-dufilho, M. Devynck, and M. , Further investigation of platelet cytosolic alkalinization in essential hypertension, J Hypertens, vol.10, pp.849-54, 1992.

S. Denker, D. Huang, J. Orlowski, H. Furthmayr, and D. Barber, Direct Binding of the Na???H Exchanger NHE1 to ERM Proteins Regulates the Cortical Cytoskeleton and Cell Shape Independently of H+ Translocation, Molecular Cell, vol.6, issue.6, pp.1425-1461, 2000.
DOI : 10.1016/S1097-2765(00)00139-8

A. Lemarié, L. Huc, E. Pazarentzos, A. Mahul-mellier, and S. Grimm, Specific disintegration of complex II succinate:ubiquinone oxidoreductase links pH changes to oxidative stress for apoptosis induction, Cell Death and Differentiation, vol.80, issue.2, pp.338-387, 2011.
DOI : 10.1038/nprot.2006.238

S. Kalkhof, F. Dautel, S. Loguercio, S. Baumann, S. Trump et al., ]pyrene Toxicity on Hepa1c1c7 Cells at Toxic and Subtoxic Exposure, Journal of Proteome Research, vol.14, issue.1, pp.164-82, 2015.
DOI : 10.1021/pr500957t

S. Reshkin, A. Bellizzi, S. Caldeira, V. Albarani, I. Malanchi et al., Na+/H+ exchanger-dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation-associated phenotypes, The FASEB Journal, vol.14, issue.14, pp.2185-97, 2000.
DOI : 10.1096/fj.00-0029com

R. Gatenby and R. Gillies, A microenvironmental model of carcinogenesis, Nature Reviews Cancer, vol.98, issue.1, pp.56-61, 2008.
DOI : 10.1158/0008-5472.CAN-05-4193

M. Sharma, M. Astekar, S. Soi, B. Manjunatha, D. Shetty et al., pH Gradient Reversal: An Emerging Hallmark of Cancers, Recent Patents on Anti-Cancer Drug Discovery, vol.10, issue.3, pp.244-58, 2015.
DOI : 10.2174/1574892810666150708110608

Z. Gao, Y. Bu, X. Liu, X. Wang, G. Zhang et al., TCDD promoted EMT of hFPECs via AhR, which involved the activation of EGFR/ERK signaling, Toxicology and Applied Pharmacology, vol.298, pp.48-55, 2016.
DOI : 10.1016/j.taap.2016.03.005

E. Reyes-reyes, I. Ramos, M. Tavera-garcia, and K. Ramos, The aryl hydrocarbon receptor agonist benzo(a)pyrene reactivates LINE-1 in HepG2 cells through canonical TGF-?1 signaling: implications in hepatocellular carcinogenesis, Am J Cancer Res, vol.6, pp.1066-77, 2016.

M. Peak, M. Habori, and L. Agius, Regulation of glycogen synthesis and glycolysis by insulin, pH and cell volume. Interactions between swelling and alkalinization in mediating the effects of insulin, Biochemical Journal, vol.282, issue.3, pp.797-805, 1992.
DOI : 10.1042/bj2820797

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1130858/pdf

L. Putney and D. Barber, Expression profile of genes regulated by activity of the Na-H exchanger NHE1, BMC Genomics, vol.5, pp.10-1186, 2004.

J. Calderon-montano, E. Burgos-moron, C. Perez-guerrero, J. Salvador, A. Robles et al., Role of the intracellular pH in the metabolic switch between oxidative phosphorylation and aerobic glycolysis ? Relevance to cancer, WebMedCentral Cancer, vol.2, issue.3, p.1716, 2011.

C. Quach, K. Jung, J. Lee, J. Park, S. Moon et al., Mild Alkalization Acutely Triggers the Warburg Effect by Enhancing Hexokinase Activity via Voltage-Dependent Anion Channel Binding, PLOS ONE, vol.11, issue.8, 2016.
DOI : 10.1371/journal.pone.0159529.g008

L. Miccoli, S. Oudard, F. Sureau, F. Poirson, B. Dutrillaux et al., Intracellular pH governs the subcellular distribution of hexokinase in a glioma cell line, Biochemical Journal, vol.313, issue.3, pp.957-62, 1996.
DOI : 10.1042/bj3130957

S. Mathupala, Y. Ko, and P. Pedersen, Hexokinase-2 bound to mitochondria: Cancer's stygian link to the ???Warburg effect??? and a pivotal target for effective therapy, Seminars in Cancer Biology, vol.19, issue.1, pp.17-24, 2009.
DOI : 10.1016/j.semcancer.2008.11.006

P. Rády, I. Arany, F. Boján, and P. Kertai, Effect of carcinogenic and non-carcinogenic chemicals on the activities of four glycolytic enzymes in mouse lung, Chemico-Biological Interactions, vol.31, issue.2, pp.209-222, 1980.
DOI : 10.1016/0009-2797(80)90007-1

F. Mraiche, C. Wagg, G. Lopaschuk, and L. Fliegel, Elevated levels of activated NHE1 protect the myocardium and improve metabolism following ischemia/reperfusion injury, Journal of Molecular and Cellular Cardiology, vol.50, issue.1, pp.157-64, 2011.
DOI : 10.1016/j.yjmcc.2010.10.016

S. Grimm, Respiratory chain complex II as general sensor for apoptosis, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1827, issue.5, pp.565-72, 2013.
DOI : 10.1016/j.bbabio.2012.09.009

URL : http://doi.org/10.1016/j.bbabio.2012.09.009

M. Hwang, J. Rohlena, L. Dong, J. Neuzil, and S. Grimm, Powerhouse down: Complex II dissociation in the respiratory chain, Mitochondrion, vol.19, 2014.
DOI : 10.1016/j.mito.2014.06.001

L. Tretter, A. Patocs, and C. Chinopoulos, Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1857, issue.8, pp.1086-101, 2016.
DOI : 10.1016/j.bbabio.2016.03.012

J. Santo-domingo and N. Demaurex, The renaissance of mitochondrial pH, The Journal of General Physiology, vol.1710, issue.6, pp.415-438, 2012.
DOI : 10.1074/jbc.M109.059956

A. Lambert and M. Brand, Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane, Biochemical Journal, vol.382, issue.2, pp.511-518, 2004.
DOI : 10.1042/BJ20040485

. Na+, H+ exchanger-1 inhibitors decrease myocardial superoxide production via direct mitochondrial action, J Appl Physiol, vol.105, pp.1706-1719, 2008.

M. Villa-abrille, E. Cingolani, H. Cingolani, and B. Alvarez, Silencing of cardiac mitochondrial NHE1 prevents mitochondrial permeability transition pore opening, AJP: Heart and Circulatory Physiology, vol.300, issue.4, pp.1237-51, 2011.
DOI : 10.1152/ajpheart.00840.2010

B. Alvarez and M. Villa-abrille, Mitochondrial NHE1: a newly identified target to prevent heart disease, Frontiers in Physiology, vol.4, 2013.
DOI : 10.3389/fphys.2013.00152

URL : http://doi.org/10.3389/fphys.2013.00152

T. Morita, T. Nagaki, I. Fukuda, and K. Okumura, Clastogenicity of low pH to various cultured mammalian cells, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.268, issue.2, pp.297-305, 1992.
DOI : 10.1016/0027-5107(92)90235-T

J. Yuan, L. Narayanan, S. Rockwell, and P. Glazer, Diminished DNA repair and elevated mutagenesis in mammalian cells exposed to hypoxia and low pH, Cancer Res, vol.60, pp.4372-4378, 2000.

M. Dimanche-boitrel, O. Meurette, S. Jouan-lanhouët, A. Rebillard, L. Huc et al., The acidic extracellular pH: Origin, role in tumorigenesis and cancer therapy, Proton homeostasis and cell death, pp.105-118, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00682514

A. Andersen, J. Moreira, and S. Pedersen, Interactions of ion transporters and channels with cancer cell metabolism and the tumour microenvironment, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.72, issue.21, 2014.
DOI : 10.1158/1078-0432.CCR-08-0483

J. Schelling, A. Jawdeh, and B. , Regulation of cell survival by Na+/H+ exchanger-1, AJP: Renal Physiology, vol.295, issue.3, 2008.
DOI : 10.1152/ajprenal.90212.2008

Y. Mukhin, M. Garnovskaya, M. Ullian, and J. Raymond, ERK Is Regulated by Sodium-Proton Exchanger in Rat Aortic Vascular Smooth Muscle Cells, Journal of Biological Chemistry, vol.279, issue.3, pp.1845-52, 2004.
DOI : 10.1074/jbc.M304907200

S. Pedersen, B. Darborg, M. Rentsch, and M. Rasmussen, Regulation of mitogen-activated protein kinase pathways by the plasma membrane Na+/H+ exchanger, NHE1, Archives of Biochemistry and Biophysics, vol.462, issue.2, pp.195-201, 2007.
DOI : 10.1016/j.abb.2006.12.001

C. Stock and A. Schwab, Protons make tumor cells move like clockwork, Pfl??gers Archiv - European Journal of Physiology, vol.32, issue.Suppl 5, pp.981-92, 2009.
DOI : 10.1007/s00424-009-0677-8

S. Denker and D. Barber, Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1, The Journal of Cell Biology, vol.261, issue.6, pp.1087-96, 2002.
DOI : 10.1083/jcb.143.5.1295

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2173980

F. Ludwig, A. Schwab, and C. Stock, -exchanger (NHE1) generates pH nanodomains at focal adhesions, Journal of Cellular Physiology, vol.138, issue.6, 2013.
DOI : 10.1002/jcp.24293

URL : https://hal.archives-ouvertes.fr/hal-00475146

Y. Chiang, C. Chou, K. Hsu, Y. Huang, and M. Shen, EGF upregulates Na+/H+ exchanger NHE1 by post-translational regulation that is important for cervical cancer cell invasiveness, Journal of Cellular Physiology, vol.184, issue.3, pp.810-819, 2008.
DOI : 10.1002/jcp.21277

L. Brisson, V. Driffort, L. Benoist, M. Poet, L. Counillon et al., NaV1.5 Na+ channels allosterically regulate the NHE-1 exchanger and promote the activity of breast cancer cell invadopodia, Journal of Cell Science, vol.126, issue.21, pp.4835-4877, 2013.
DOI : 10.1242/jcs.123901

E. Antelmi, R. Cardone, M. Greco, R. Rubino, D. Sole et al., ??1 Integrin Binding Phosphorylates Ezrin at T567 to Activate a Lipid Raft Signalsome Driving Invadopodia Activity and Invasion, PLoS ONE, vol.50, issue.9, 2013.
DOI : 10.1371/journal.pone.0075113.s004

URL : http://doi.org/10.1371/journal.pone.0075113

Y. Lin, G. Chang, J. Wang, J. W. Wang, L. Li et al., NHE1 mediates MDA-MB-231 cells invasion through the regulation of MT1-MMP, Experimental Cell Research, vol.317, issue.14, 2011.
DOI : 10.1016/j.yexcr.2011.05.026

Y. Lin, J. Wang, J. W. Wang, L. Li, H. Ma et al., NHE1 mediates migration and invasion of HeLa cells via regulating the expression and localization of MT1-MMP, Cell Biochemistry and Function, vol.113, issue.5, pp.41-47, 2012.
DOI : 10.1002/cbf.1815

T. Nguyen, H. Wang, S. Zalzal, A. Nanci, and I. Nabi, Purification and Characterization of ??-Actin-Rich Tumor Cell Pseudopodia: Role of Glycolysis, Experimental Cell Research, vol.258, issue.1, pp.171-83, 2000.
DOI : 10.1006/excr.2000.4929

F. Attanasio, G. Caldieri, G. Giacchetti, R. Van-horssen, B. Wieringa et al., Novel invadopodia components revealed by differential proteomic analysis, European Journal of Cell Biology, vol.90, issue.2-3, pp.115-142, 2011.
DOI : 10.1016/j.ejcb.2010.05.004

X. Mo, Q. Chen, X. Li, M. Zheng, D. Ke et al., Suppression of NHE1 by small interfering RNA inhibits HIF-1??-induced angiogenesis in vitro via modulation of calpain activity, Microvascular Research, vol.81, issue.2
DOI : 10.1016/j.mvr.2010.12.004

Z. Németh, E. Deitch, C. Szabó, J. Mabley, P. Pacher et al., exchanger blockade inhibits enterocyte inflammatory response and protects against colitis, American Journal of Physiology - Gastrointestinal and Liver Physiology, vol.283, issue.1, pp.122-154, 2002.
DOI : 10.1152/ajpgi.00015.2002

X. Yang, H. Bai, W. Cai, J. Liu, Y. Wang et al., Inhibition of Na+/H+ exchanger 1 by cariporide alleviates burn-induced multiple organ injury, Journal of Surgical Research, vol.185, issue.2, pp.797-804, 2013.
DOI : 10.1016/j.jss.2013.06.049

S. Harguindey, J. Arranz, P. Orozco, J. Rauch, C. Fais et al., Cariporide and other new and powerful NHE1 inhibitors as potentially selective anticancer drugs ??? an integral molecular/biochemical/metabolic/clinical approach after one hundred years of cancer research, Journal of Translational Medicine, vol.11, issue.1, pp.282-292, 2013.
DOI : 10.1038/459508a

L. Putney, S. Denker, and D. Barber, , NHE1: Structure, Regulation, and Cellular Actions, Annual Review of Pharmacology and Toxicology, vol.42, issue.1, pp.527-52, 2002.
DOI : 10.1146/annurev.pharmtox.42.092001.143801

K. Petrecca, R. Atanasiu, S. Grinstein, J. Orlowski, and A. Shrier, Subcellular localization of the Na+/H+ exchanger NHE1 in rat myocardium, Am J Physiol, vol.276, pp.709-726, 1999.

C. Peracchia, Chemical gating of gap junction channels, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1662, issue.1-2, pp.61-80, 2004.
DOI : 10.1016/j.bbamem.2003.10.020

URL : http://doi.org/10.1016/j.bbamem.2003.10.020

P. Swietach, A. Rossini, K. Spitzer, and R. Vaughan-jones, H+ Ion Activation and Inactivation of the Ventricular Gap Junction: A Basis for Spatial Regulation of Intracellular pH, Circulation Research, vol.100, issue.7, 2007.
DOI : 10.1161/01.RES.0000264071.11619.47

N. Nandakumar, T. Rengarajan, A. Balamurugan, and M. Balasubramanian, )anthracene-induced breast carcinogenesis, Human & Experimental Toxicology, vol.187, issue.8, pp.504-520, 2014.
DOI : 10.1093/annonc/mdl498

X. Tekpli, J. Holme, O. Sergent, and D. Lagadic-gossmann, Importance of Plasma Membrane Dynamics in Chemical-Induced Carcinogenesis, Recent Patents on Anti-Cancer Drug Discovery, vol.6, issue.3, pp.347-53, 2011.
DOI : 10.2174/157489211796957784

URL : https://hal.archives-ouvertes.fr/hal-00696148

X. Tekpli, J. Holme, O. Sergent, and D. Lagadic-gossmann, Role for membrane remodeling in cell death: Implication for health and disease, Toxicology, vol.304, pp.141-57, 2013.
DOI : 10.1016/j.tox.2012.12.014

URL : https://hal.archives-ouvertes.fr/inserm-00818916

C. Aravena, A. Beltrán, M. Cornejo, V. Torres, E. Díaz et al., Potential Role of Sodium-Proton Exchangers in the Low Concentration Arsenic Trioxide-Increased Intracellular pH and Cell Proliferation, PLoS ONE, vol.166, issue.12, 2012.
DOI : 10.1371/journal.pone.0051451.t003

X. Wang, X. Mu, J. Zhang, Q. Huang, A. Alamdar et al., Serum metabolomics reveals that arsenic exposure disrupted lipid and amino acid metabolism in rats: a step forward in understanding chronic arsenic toxicity, Metallomics, vol.26, issue.3, pp.544-52
DOI : 10.1039/C5MT00002E

F. Zhao, P. Severson, S. Pacheco, B. Futscher, and W. Klimecki, Arsenic exposure induces the Warburg effect in cultured human cells, Toxicology and Applied Pharmacology, vol.271, issue.1, pp.72-79, 2013.
DOI : 10.1016/j.taap.2013.04.020

H. Chen, L. Lee, G. Li, S. Tsao, and J. Chiu, Upregulation of glycolysis and oxidative phosphorylation in benzo[α]pyrene and arsenic-induced rat lung epithelial transformed cells, Oncotarget, 2016.
DOI : 10.18632/oncotarget.9814

L. Huc, D. Gilot, C. Gardyn, M. Rissel, M. Dimanche-boitrel et al., )pyrene in Liver Epithelial Cells, Annals of the New York Academy of Sciences, vol.44, issue.suppl. 1, pp.167-70, 2003.
DOI : 10.1196/annals.1299.028

F. Kruiswijk, C. Labuschagne, and K. Vousden, p53 in survival, death and metabolic health: a lifeguard with a licence to kill, Nature Reviews Molecular Cell Biology, vol.520, issue.7, pp.393-405, 2015.
DOI : 10.1038/nrm4007

Y. Aylon and M. Oren, The Paradox of p53: What, How, and Why? Cold Spring Harb Perspect Med, 2016.

F. Schwartzenberg-bar-yoseph, M. Armoni, and E. Karnieli, The Tumor Suppressor p53 Down-Regulates Glucose Transporters GLUT1 and GLUT4 Gene Expression, Cancer Research, vol.64, issue.7, pp.2627-2660, 2004.
DOI : 10.1158/0008-5472.CAN-03-0846

K. Bensaad, A. Tsuruta, M. Selak, M. Vidal, K. Nakano et al., TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis, Cell, vol.126, issue.1, 2006.
DOI : 10.1016/j.cell.2006.05.036

W. Hu, C. Zhang, R. Wu, Y. Sun, A. Levine et al., Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function, Proceedings of the National Academy of Sciences, vol.43, issue.42, pp.7455-60, 2010.
DOI : 10.1073/pnas.0708043104

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2867677

S. Matoba, J. Kang, W. Patino, A. Wragg, M. Boehm et al., p53 Regulates Mitochondrial Respiration, Science, vol.312, issue.5780, pp.1650-1653, 2006.
DOI : 10.1126/science.1126863

M. Bergeaud, L. Mathieu, A. Guillaume, U. Moll, B. Mignotte et al., Mitochondrial p53 mediates a transcription-independent regulation of cell respiration and interacts with the mitochondrial F???F???-ATP synthase, Cell Cycle, vol.275, issue.17, pp.2781-93, 2013.
DOI : 10.4161/cc.25870

A. Kochhar, L. Kopelovich, E. Sue, J. Guttenplan, B. Herbert et al., p53 Modulates Hsp90 ATPase Activity and Regulates Aryl Hydrocarbon Receptor Signaling, Cancer Prevention Research, vol.7, issue.6, pp.596-606, 2014.
DOI : 10.1158/1940-6207.CAPR-14-0051

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074578

L. Galluzzi, E. Morselli, O. Kepp, I. Vitale, M. Pinti et al., Mitochondrial Liaisons of p53, Antioxidants & Redox Signaling, vol.15, issue.6
DOI : 10.1089/ars.2010.3504

C. Zhang, J. Liu, Y. Liang, R. Wu, Y. Zhao et al., Tumour-associated mutant p53 drives the Warburg effect, Nature Communications, vol.38, pp.2935-2945, 2013.
DOI : 10.1038/ncomms3935

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969270

B. Dendelé, X. Tekpli, K. Hardonnière, J. Holme, L. Debure et al., Protective action of n-3 fatty acids on benzo[a]pyrene-induced apoptosis through the plasma membrane remodeling-dependent NHE1 pathway, Chemico-Biological Interactions, vol.207, pp.41-51, 2014.
DOI : 10.1016/j.cbi.2013.11.002