E. H. Lieb and F. Wu, Absence of Mott Transition in an Exact Solution of the Short-Range, One-Band Model in One Dimension, Physical Review Letters, vol.19, issue.25, pp.1445-1448, 1968.
DOI : 10.1103/PhysRevLett.19.1312

A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Reviews of Modern Physics, vol.75, issue.200, pp.13-125, 1996.
DOI : 10.1016/0038-1098(90)90282-G

W. Metzner and . Vollhardt, Dimensions, Physical Review Letters, vol.61, issue.3, pp.324-327, 1989.
DOI : 10.1103/PhysRevLett.61.2582

M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator transitions, Reviews of Modern Physics, vol.53, issue.189, pp.1039-1263, 1998.
DOI : 10.1103/PhysRevB.53.983

D. Edwards and A. Hewson, Comment on Hubbard's Theory of the Mott Transition, Reviews of Modern Physics, vol.30, issue.4, pp.810-811, 1968.
DOI : 10.1143/PTP.30.275

A. B. Harris and R. Lange, Single-Particle Excitations in Narrow Energy Bands, Physical Review, vol.137, issue.2, pp.295-314, 1967.
DOI : 10.1103/PhysRev.137.A1877

D. M. Esterling and R. Lange, Degenerate Mass Operator Perturbation Theory in the Hubbard Model, Reviews of Modern Physics, vol.115, issue.4, pp.796-799, 1968.
DOI : 10.1103/PhysRev.115.1342

L. Roth, New Method for Linearizing Many-Body Equations of Motion in Statistical Mechanics, Physical Review Letters, vol.147, issue.25, pp.1431-1434, 1968.
DOI : 10.1103/PhysRev.147.392

L. Roth, Band, Physical Review, vol.142, issue.2, pp.451-459, 1969.
DOI : 10.1103/PhysRev.142.350

URL : https://hal.archives-ouvertes.fr/in2p3-00020422

R. A. Bari, Narrow-Band Expansions in the Hubbard Model: A Comment, Physical Review B, vol.276, issue.6, pp.2260-2261, 1970.
DOI : 10.1098/rspa.1963.0204

V. M. Turkowski and J. Freericks, Spectral moment sum rules for strongly correlated electrons in time-dependent electric fields, Physical Review B, vol.276, issue.7, p.75108, 2006.
DOI : 10.1103/PhysRevB.34.6933

W. Nolting and W. Borgiel, Band magnetism in the Hubbard model, Physical Review B, vol.37, issue.10, pp.6962-6978, 1989.
DOI : 10.1103/PhysRevB.37.7663

. Actually, the Fourier transform from the time to the frequency domain is performed before the equation-of-motion chain. So, the equation-of-motion chain is written directly in the ?-space, the original Hubbard papers

Y. Claveau, B. Arnaud, D. Matteo, and S. , Mean-field solution of the Hubbard model: the magnetic phase diagram, European Journal of Physics, vol.35, issue.3, p.35023, 2014.
DOI : 10.1088/0143-0807/35/3/035023

URL : https://hal.archives-ouvertes.fr/hal-00980582

J. Luttinger, Fermi Surface and Some Simple Equilibrium Properties of a System of Interacting Fermions, Physical Review, vol.30, issue.4, pp.1153-1163, 1960.
DOI : 10.1103/PhysRev.106.369

G. Keller, K. Held, V. Eyert, D. Vollhardt, and V. Anisimov, : Strongly correlated metallic and Mott insulating phase, Physical Review B, vol.56, issue.20, p.205116, 2004.
DOI : 10.1088/0953-8984/10/42/022

URL : http://arxiv.org/pdf/cond-mat/0402133

V. I. Anisimov, F. Aryasetiawan, and A. Lichtenstein, method, Journal of Physics: Condensed Matter, vol.9, issue.4, p.767, 1997.
DOI : 10.1088/0953-8984/9/4/002

Y. Vilk and A. Tremblay, Non-Perturbative Many-Body Approach to the Hubbard Model and Single-Particle Pseudogap, Journal de Physique I, vol.7, issue.11, pp.1309-1368, 1997.
DOI : 10.1051/jp1:1997135

URL : https://hal.archives-ouvertes.fr/jpa-00247457

S. White, Spectral weight function for the two-dimensional Hubbard model, Physical Review B, vol.41, issue.9, pp.4670-4673, 1991.
DOI : 10.1103/PhysRevB.41.9301