Structure and viscosity of phase-separated BaO-SiO2 glasses

Abstract : Barium silicate glasses with 0-40 mol% BaO were synthesized either by aerodynamical levitation and laser heating (at low barium content) or by conventional melting and quenching process. Characterization by means of Raman scattering spectroscopy and scanning transmission electron microscopy reveals a structural transition between glasses with low BaO content (<10 mol%) showing an atomic network resembling the one of amorphous silica, and glasses with a BaO content larger than 10 mol%, which exhibit the typical signature of a binary silicate glass with Q(2) and Q(3) units. Viscosity curves show a marked increase of the viscosity as the BaO content decreases below 20 mol%. Barium is found to easily diffuse and promote phase separation while silicon remains homogeneously distributed. A dramatic increase in the viscosity is observed as phase separation proceeds, resulting in the formation of Ba-rich nodules in a percolating SiO2-rich matrix at low barium content, or in Ba-poor nodules in a BaO-rich matrix at large barium content.
Document type :
Journal articles
Complete list of metadatas

https://hal-univ-rennes1.archives-ouvertes.fr/hal-01532199
Contributor : Laurent Jonchère <>
Submitted on : Friday, June 2, 2017 - 3:31:05 PM
Last modification on : Wednesday, May 22, 2019 - 2:26:08 PM

Identifiers

Citation

Yann Gueguen, Patrick Houizot, Fabrice Célarié, Mingwei Chen, Akihiko Hirata, et al.. Structure and viscosity of phase-separated BaO-SiO2 glasses. Journal of the American Ceramic Society, Wiley, 2017, 100 (5), pp.1982--1993. ⟨10.1111/jace.14642⟩. ⟨hal-01532199⟩

Share

Metrics

Record views

222