N. M. Teets and D. L. Denlinger, Physiological mechanisms of seasonal and rapid cold-hardening in insects, Physiological Entomology, vol.52, issue.2, pp.105-116, 2013.
DOI : 10.1016/j.jinsphys.2005.10.005

A. A. Hoffmann, J. G. Sørensen, V. Loeschcke, G. S. Jesper, and J. G. Sorensen, Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches, Journal of Thermal Biology, vol.28, issue.3, pp.175-216, 2003.
DOI : 10.1016/S0306-4565(02)00057-8

H. Colinet and A. A. Hoffmann, Functional Ecology, vol.17, issue.1, pp.84-93, 2012.
DOI : 10.1016/S0169-5347(01)02384-9

A. R. Gerken, O. C. Eller, D. A. Hahn, and T. J. Morgan, Constraints, independence, and evolution of thermal plasticity: Probing genetic architecture of long- and short-term thermal acclimation, Proc. Natl. Acad. Sci. USA, pp.4399-4404, 2015.
DOI : 10.1186/gb-2003-4-5-p3

N. Teets and D. L. Denlinger, Quantitative Phosphoproteomics Reveals Signaling Mechanisms Associated with Rapid Cold Hardening in a Chill-Tolerant Fly, Journal of Proteome Research, vol.15, issue.8, pp.2855-2862, 2016.
DOI : 10.1021/acs.jproteome.6b00427

H. A. Macmillan, Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome, Scientific Reports, vol.23, issue.1, p.28999
DOI : 10.1093/bioinformatics/btm051

T. Kristensen, K. Henrik, M. F. Schou, and J. L. Nielsen, Proteomic data reveal a physiological basis for costs and benefits associated with thermal acclimation, The Journal of Experimental Biology, vol.219, issue.7, pp.969-976, 2016.
DOI : 10.1242/jeb.132696

H. Colinet, J. Overgaard, E. Com, J. G. Sørensen, and J. Givskov, Proteomic profiling of thermal acclimation in Drosophila melanogaster, Insect Biochemistry and Molecular Biology, vol.43, issue.4, pp.352-365, 2013.
DOI : 10.1016/j.ibmb.2013.01.006

URL : https://hal.archives-ouvertes.fr/hal-00826939

J. Overgaard, J. G. Sørensen, E. Com, and H. Colinet, The rapid cold hardening response of Drosophila melanogaster: Complex regulation across different levels of biological organization, Journal of Insect Physiology, vol.62, pp.46-53, 2014.
DOI : 10.1016/j.jinsphys.2014.01.009

URL : https://hal.archives-ouvertes.fr/hal-00991032

S. De-la-fuente-van-bentem, Phosphoproteomics as a tool to unravel plant regulatory mechanisms, Physiologia Plantarum, vol.2, issue.1, pp.110-119, 2016.
DOI : 10.1104/pp.103.022749

J. Barrero-gil and J. Salinas, Post-translational regulation of cold acclimation response, Plant Science, vol.205, issue.206, pp.205-206, 2013.
DOI : 10.1016/j.plantsci.2013.01.008

A. F. Monroy, V. Sangwan, and R. S. Dhindsa, Low temperature signal transduction during cold acclimation: protein phosphatase 2A as an early target for cold-inactivation, The Plant Journal, vol.14, issue.5, pp.653-660, 1998.
DOI : 10.1104/pp.101.4.1275

T. Hunter, Signaling???2000 and Beyond, Cell, vol.100, issue.1, pp.113-127, 2000.
DOI : 10.1016/S0092-8674(00)81688-8

URL : https://doi.org/10.1016/s0092-8674(00)81688-8

R. Goel, H. C. Harsha, A. Pandey, and T. S. Prasad, Human Protein Reference Database and Human Proteinpedia as resources for phosphoproteome analysis, Mol. BioSyst., vol.10, issue.Suppl 2, pp.453-463, 2012.
DOI : 10.1074/mcp.M110.004457

URL : http://europepmc.org/articles/pmc3804167?pdf=render

A. M. Moses and C. R. Landry, Moving from transcriptional to phospho-evolution: generalizing regulatory evolution?, Trends in Genetics, vol.26, issue.11, pp.462-467, 2010.
DOI : 10.1016/j.tig.2010.08.002

T. D. Pfister and K. B. Storey, Insect freeze tolerance: Roles of protein phosphatases and protein kinase A, Insect Biochemistry and Molecular Biology, vol.36, issue.1, pp.18-24, 2016.
DOI : 10.1016/j.ibmb.2005.10.002

D. C. Mcmullen and K. B. Storey, Suppression of Na+K+-ATPase activity by reversible phosphorylation over the winter in a freeze-tolerant insect, Journal of Insect Physiology, vol.54, issue.6, pp.1023-1027, 2008.
DOI : 10.1016/j.jinsphys.2008.04.001

T. E. Thingholm, O. N. Jensen, P. J. Robinson, M. R. Larsen, and . Simac, SIMAC (Sequential Elution from IMAC), a Phosphoproteomics Strategy for the Rapid Separation of Monophosphorylated from Multiply Phosphorylated Peptides, Molecular & Cellular Proteomics, vol.76, issue.4, pp.661-671, 2008.
DOI : 10.1021/ac0497104

B. Bodenmiller, PhosphoPep???a phosphoproteome resource for systems biology research in Drosophila Kc167 cells, Molecular Systems Biology, vol.19, p.139, 2007.
DOI : 10.1038/msb4100182

URL : http://msb.embopress.org/content/msb/3/1/139.full.pdf

B. Zhai, J. Villén, S. A. Beausoleil, J. Mintseris, and S. P. Gygi, Embryos, Journal of Proteome Research, vol.7, issue.4, pp.1675-1682, 2008.
DOI : 10.1021/pr700696a

O. K. Kwon, J. Sim, K. N. Yun, J. Y. Kim, and S. Lee, Reveals Evolutionary Conservation of Ser/Thr/Tyr Phosphorylation, Journal of Proteome Research, vol.13, issue.3, pp.1327-1335, 2014.
DOI : 10.1021/pr400911x

J. Boekhorst, Evaluating Experimental Bias and Completeness in Comparative Phosphoproteomics Analysis, PLoS ONE, vol.x, issue.8, p.23276, 2011.
DOI : 10.1371/journal.pone.0023276.s002

URL : https://doi.org/10.1371/journal.pone.0023276

D. Szklarczyk, STRING v10: protein???protein interaction networks, integrated over the tree of life, Nucleic Acids Research, vol.1695, issue.D1, pp.447-452, 2015.
DOI : 10.1186/gb-2004-5-10-r80

URL : https://academic.oup.com/nar/article-pdf/43/D1/D447/7311163/gku1003.pdf

F. Supek, M. Bo?njak, N. ?kunca, and T. ?muc, REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms, PLoS ONE, vol.6, issue.7, p.21800, 2011.
DOI : 10.1371/journal.pone.0021800.t001

URL : https://doi.org/10.1371/journal.pone.0021800

J. O. Vigoreaux, J. D. Saide, K. Valgeirsdottir, and M. L. Pardue, Flightin, a novel myofibrillar protein of Drosophila stretch-activated muscles, The Journal of Cell Biology, vol.121, issue.3, pp.587-598, 1993.
DOI : 10.1083/jcb.121.3.587

URL : http://jcb.rupress.org/content/jcb/121/3/587.full.pdf

J. O. Vigoreaux and L. M. Perry, Multiple isoelectric variants of flightin in Drosophila stretch-activated muscles are generated by temporally regulated phosphorylations, Journal of Muscle Research and Cell Motility, vol.260, issue.6, pp.607-616, 1994.
DOI : 10.1161/01.CIR.83.1.13

I. Dalle-donne, R. Rossi, A. Milzani, D. Simplicio, P. Colombo et al., The actin cytoskeleton response to oxidants: from small heat shock protein phosphorylation to changes in the redox state of actin itself, Free Radical Biology and Medicine, vol.31, issue.12, pp.1624-1632, 2001.
DOI : 10.1016/S0891-5849(01)00749-3

G. P. Kerr and J. V. Carter, Relationship between Freezing Tolerance of Root-Tip Cells and Cold Stability of Microtubules in Rye (Secale cereale L. cv Puma), PLANT PHYSIOLOGY, vol.93, issue.1, pp.77-82, 1990.
DOI : 10.1104/pp.93.1.77

J. Danyluk, E. Carpentier, and F. Sarhan, Identification and characterization of a low temperature regulated gene encoding an actin-binding protein from wheat, FEBS Letters, vol.109, issue.3, pp.324-327, 1996.
DOI : 10.1104/pp.109.3.1077

URL : http://onlinelibrary.wiley.com/doi/10.1016/0014-5793(96)00599-6/pdf

F. Ouellet, E. Carpentier, M. J. Cope, A. F. Monroy, and F. Sarhan, Regulation of a Wheat Actin-Depolymerizing Factor during Cold Acclimation, PLANT PHYSIOLOGY, vol.125, issue.1, pp.360-368, 2001.
DOI : 10.1104/pp.125.1.360

URL : http://www.plantphysiol.org/content/plantphysiol/125/1/360.full.pdf

M. Kim, R. M. Robich, J. P. Rinehart, and D. L. Denlinger, Upregulation of two actin genes and redistribution of actin during diapause and cold stress in the northern house mosquito, Culex pipiens, Journal of Insect Physiology, vol.52, issue.11-12, pp.1226-1233, 2006.
DOI : 10.1016/j.jinsphys.2006.09.007

M. Kim and D. L. Denlinger, Insect Molecular Biology, vol.9, issue.3, pp.295-302, 2009.
DOI : 10.1152/ajpregu.00459.2007

T. Kayukawa and Y. Ishikawa, Chaperonin Contributes to Cold Hardiness of the Onion Maggot Delia antiqua through Repression of Depolymerization of Actin at Low Temperatures, PLoS ONE, vol.4, issue.12, p.8277, 2009.
DOI : 10.1371/journal.pone.0008277.s003

D. M. Cottam, Non-centrosomal microtubule-organising centres in cold-treated culturedDrosophila cells, Cell Motility and the Cytoskeleton, vol.110, issue.2, pp.88-100, 2006.
DOI : 10.1091/mbc.12.6.1751

H. Colinet, T. T. Nguyen, C. Cloutier, D. Michaud, and T. Hance, Proteomic profiling of a parasitic wasp exposed to constant and fluctuating cold exposure, Insect Biochemistry and Molecular Biology, vol.37, issue.11, pp.1177-1188, 2007.
DOI : 10.1016/j.ibmb.2007.07.004

N. M. Teets, Combined transcriptomic and metabolomic approach uncovers molecular mechanisms of cold tolerance in a temperate flesh fly, Physiological Genomics, vol.3, issue.15, pp.764-777, 2012.
DOI : 10.1371/journal.pgen.1000221

URL : https://hal.archives-ouvertes.fr/hal-00738640

M. Bräutigam, Generation and analysis of 9792 EST sequences from cold acclimated oat, Avena sativa, BMC Plant Biology, vol.5, issue.1, p.18, 2005.
DOI : 10.1186/1471-2229-5-18

R. Grene, Mining and visualization of microarray and metabolomic data reveal extensive cell wall remodeling during winter hardening in Sitka spruce (Picea sitchensis), Frontiers in Plant Science, vol.3, p.241, 2012.
DOI : 10.3389/fpls.2012.00241

URL : http://journal.frontiersin.org/article/10.3389/fpls.2012.00241/pdf

Y. Shafrir, D. Ben-avraham, and G. Forgacs, Trafficking and signaling through the cytoskeleton: a specific mechanism, J. Cell Biol, vol.113, pp.2747-2757, 2000.

G. Forgacs, Role of the cytoskeleton in signaling networks, Journal of Cell Science, vol.117, issue.13, pp.2769-2775, 2004.
DOI : 10.1242/jcs.01122

J. Zhu, C. H. Dong, and J. K. Zhu, Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation, Current Opinion in Plant Biology, vol.10, issue.3, pp.290-295, 2007.
DOI : 10.1016/j.pbi.2007.04.010

E. Yu and G. W. Owttrim, 1713 | DOI:10.1038/s41598-017-01974-z 42 Characterization of the cold stress-induced cyanobacterial DEAD-box protein CrhC as an RNA helicase, Nucleic Acids Res, vol.7, issue.28, pp.3926-3934, 2000.

Z. Gong, A DEAD Box RNA Helicase Is Essential for mRNA Export and Important for Development and Stress Responses in Arabidopsis, THE PLANT CELL ONLINE, vol.17, issue.1, pp.256-267, 2005.
DOI : 10.1105/tpc.104.027557

URL : http://www.plantcell.org/content/plantcell/17/1/256.full.pdf

N. Awano, Complementation Analysis of the Cold-Sensitive Phenotype of the Escherichia coli csdA Deletion Strain, Journal of Bacteriology, vol.189, issue.16, pp.5808-5815, 2007.
DOI : 10.1128/JB.00655-07

G. W. Owttrim, RNA helicases, RNA Biology, vol.77, issue.1, pp.96-110, 2013.
DOI : 10.1038/nature09152

Y. Long, Transcriptomic characterization of cold acclimation in larval zebrafish, BMC Genomics, vol.14, issue.1, p.612, 2013.
DOI : 10.1186/1471-2164-14-612

URL : https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/1471-2164-14-612?site=bmcgenomics.biomedcentral.com

S. Imamura, N. Ojima, and M. Yamashita, FEBS Letters, vol.107, issue.1-3, pp.14-20, 2003.
DOI : 10.1016/S0092-8674(01)00595-5

M. B. Al-fageeh and C. M. Smales, Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems, Biochemical Journal, vol.397, issue.2, pp.247-259, 2006.
DOI : 10.1042/BJ20060166

J. Patel, Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors, European Journal of Biochemistry, vol.268, issue.12, pp.3076-3085, 2002.
DOI : 10.1046/j.1432-1327.2001.02064.x

H. Colinet and D. Renault, Metabolic effects of CO2 anaesthesia in Drosophila melanogaster, Biology Letters, vol.326, issue.1237, pp.1050-1054, 2012.
DOI : 10.1098/rstb.1990.0036

URL : https://hal.archives-ouvertes.fr/hal-00780202

H. Colinet, T. Chertemps, I. Boulogne, and D. Siaussat, Adults, The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol.16, issue.12, pp.1574-1580, 2016.
DOI : 10.1111/j.1472-765X.2006.02040.x

URL : https://hal.archives-ouvertes.fr/hal-01235793

H. Colinet, S. F. Lee, and A. Hoffmann, Functional Characterization of the Frost Gene in Drosophila melanogaster: Importance for Recovery from Chill Coma, PLoS ONE, vol.52, issue.6, p.10925, 2010.
DOI : 10.1371/journal.pone.0010925.g005

C. Carapito, Computational and Mass-Spectrometry-Based Workflow for the Discovery and Validation of Missing Human Proteins: Application to Chromosomes 2 and 14, Journal of Proteome Research, vol.14, issue.9, pp.3621-3634, 2015.
DOI : 10.1021/pr5010345

D. Fermin, V. Basrur, A. K. Yocum, and A. Nesvizhskii, Abacus: A computational tool for extracting and pre-processing spectral count data for label-free quantitative proteomic analysis, PROTEOMICS, vol.10, issue.7, pp.1340-1345, 2011.
DOI : 10.1186/1471-2164-10-161

URL : http://europepmc.org/articles/pmc3113614?pdf=render

T. V. Pham, S. R. Piersma, M. Warmoes, and C. R. Jimenez, On the beta-binomial model for analysis of spectral count data in label-free tandem mass spectrometry-based proteomics, Bioinformatics, vol.8, issue.3, pp.363-369, 2010.
DOI : 10.1074/mcp.M900104-MCP200

J. A. Vizcaíno, ProteomeXchange provides globally coordinated proteomics data submission and dissemination, Nature Biotechnology, vol.9, issue.3, pp.223-226, 2014.
DOI : 10.1021/pr300247u

J. A. Vizcaíno, 2016 update of the PRIDE database and its related tools, Nucleic Acids Research, vol.44, issue.D1, pp.447-456, 2016.
DOI : 10.1002/prca.201400107

H. Heberle, G. V. Meirelles, F. R. Da-silva, G. P. Telles, and R. Minghim, InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams, BMC Bioinformatics, vol.12, issue.1, p.169, 2015.
DOI : 10.1074/mcp.M112.022566

URL : https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-015-0611-3?site=bmcbioinformatics.biomedcentral.com