D. Angus and T. Van-der-poll, Severe Sepsis and Septic Shock, New England Journal of Medicine, vol.369, issue.9, pp.840-51, 2013.
DOI : 10.1056/NEJMra1208623

J. Boomer, K. To, K. Chang, O. Takasu, D. Osborne et al., Immunosuppression in Patients Who Die of Sepsis and Multiple Organ Failure, JAMA, vol.306, issue.23, pp.2594-605, 2011.
DOI : 10.1001/jama.2011.1829

R. Hotchkiss, G. Monneret, and D. Payen, Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. The Lancet Infectious diseases, pp.260-268, 2013.

C. Benjamim, C. Hogaboam, and S. Kunkel, The chronic consequences of severe sepsis, Journal of Leukocyte Biology, vol.75, issue.3, pp.408-420, 2004.
DOI : 10.1189/jlb.0503214

R. Hotchkiss, C. Coopersmith, J. Mcdunn, and T. Ferguson, The sepsis seesaw: tilting toward immunosuppression, Nature Medicine, vol.177, issue.5, pp.496-503, 2009.
DOI : 10.4049/jimmunol.177.1.557

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786779

L. Tulzo, Y. Pangault, C. Amiot, L. Guilloux, V. Tribut et al., Monocyte human leukocyte antigen-DR transcriptional downregulation by cortisol during septic shock. American journal of respiratory and critical care medicine, pp.1144-51, 2004.

P. Ward, Immunosuppression in Sepsis, JAMA, vol.306, issue.23, pp.2618-2627, 2011.
DOI : 10.1001/jama.2011.1831

J. Cohen, S. Opal, and C. T. , Sepsis studies need new direction. The Lancet Infectious diseases, pp.503-508, 2012.
DOI : 10.1016/s1473-3099(12)70136-6

J. Vincent, S. Opal, J. Marshall, and K. Tracey, Sepsis definitions: time for change, The Lancet, vol.381, issue.9868, pp.774-779, 2013.
DOI : 10.1016/S0140-6736(12)61815-7

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4535310

J. Leentjens, M. Kox, R. Koch, F. Preijers, L. Joosten et al., Reversal of immunoparalysis in humans in vivo: a double-blind, placebo-controlled, randomized pilot study. American journal of respiratory and critical care medicine, pp.838-883, 2012.

R. Dellinger, M. Levy, A. Rhodes, D. Annane, H. Gerlach et al., Surviving Sepsis Campaign, Critical Care Medicine, vol.41, issue.2, pp.580-637, 2013.
DOI : 10.1097/CCM.0b013e31827e83af

F. Stephan, K. Yang, J. Tankovic, C. Soussy, G. Dhonneur et al., Impairment of polymorphonuclear neutrophil functions precedes nosocomial infections in critically ill patients Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation, Critical care medicine. Nat Rev Immunol, vol.3013, issue.133, pp.315-22159, 2002.

J. Grailer, M. Kalbitz, F. Zetoune, and P. Ward, Persistent Neutrophil Dysfunction and Suppression of Acute Lung Injury in Mice following Cecal Ligation and Puncture Sepsis, Journal of Innate Immunity, vol.6, issue.5, pp.695-705, 2014.
DOI : 10.1159/000362554

A. Mantovani, M. Cassatella, C. Costantini, and S. Jaillon, Neutrophils in the activation and regulation of innate and adaptive immunity, Nature Reviews Immunology, vol.16, issue.8, pp.519-550, 2011.
DOI : 10.1016/j.cub.2005.12.039

A. Segal, How neutrophils kill microbes. Annual review of immunology, pp.197-223, 2005.
DOI : 10.1146/annurev.immunol.23.021704.115653

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2092448

J. Tadie, H. Bae, S. Banerjee, J. Zmijewski, and E. Abraham, Differential activation of RAGE by HMGB1 modulates neutrophil-associated NADPH oxidase activity and bacterial killing, AJP: Cell Physiology, vol.302, issue.1, pp.249-565, 2012.
DOI : 10.1152/ajpcell.00302.2011

Y. Groemping and K. Rittinger, Activation and assembly of the NADPH oxidase: a structural perspective, Biochemical Journal, vol.386, issue.3, pp.401-417, 2005.
DOI : 10.1042/BJ20041835

M. Geiszt, A. Kapus, and E. Ligeti, Chronic granulomatous disease: more than the lack of superoxide, Journal of leukocyte biology, vol.69, issue.2, pp.191-197, 2001.

J. Demaret, F. Venet, A. Friggeri, M. Cazalis, J. Plassais et al., Marked alterations of neutrophil functions during sepsis-induced immunosuppression, Journal of leukocyte biology. 2015. 22. Bianchi ME. HMGB1 loves company, pp.573-579, 2009.
DOI : 10.1189/jlb.4A0415-168RR

U. Andersson and K. Tracey, HMGB1 is a therapeutic target for sterile inflammation and infection. Annual review of immunology, pp.139-62, 2011.
DOI : 10.1146/annurev-immunol-030409-101323

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4536551

H. Yang, D. Antoine, U. Andersson, and K. Tracey, The many faces of HMGB1: molecular structure-functional activity in inflammation, apoptosis, and chemotaxis, Journal of Leukocyte Biology, vol.93, issue.6, pp.865-73, 2013.
DOI : 10.1189/jlb.1212662

H. Wang, M. Ward, and A. Sama, NOVEL HMGB1-INHIBITING THERAPEUTIC AGENTS FOR EXPERIMENTAL SEPSIS, Shock, vol.32, issue.4, pp.348-57, 2009.
DOI : 10.1097/SHK.0b013e3181a551bd

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860725

V. Manganelli, M. Signore, I. Pacini, R. Misasi, G. Tellan et al., Increased HMGB1 expression and release by mononuclear cells following surgical/anesthesia trauma, Critical Care, vol.14, issue.6, pp.197-224, 2010.
DOI : 10.1186/cc9316

URL : http://doi.org/10.1186/cc9316

S. Gibot, F. Massin, A. Cravoisy, D. Barraud, L. Nace et al., High-mobility group box 1 protein plasma concentrations during septic shock Intensive care medicine HMGB1 as a predictor of organ dysfunction and outcome in patients with severe sepsis. Intensive care medicine, pp.1347-531046, 2007.

J. Tadie, L. Trinquart, C. Janniere-nartey, E. Guerot, B. Louis et al., PREDICTION OF NOSOCOMIAL INFECTION ACQUISITION IN VENTILATED PATIENTS BY NASAL NITRIC OXIDE, Shock, vol.34, issue.3, pp.217-238, 2010.
DOI : 10.1097/SHK.0b013e3181d67494

G. Otto, M. Sossdorf, R. Claus, J. Rodel, K. Menge et al., The late phase of sepsis is characterized by an increased microbiological burden and death rate. Critical care Generation of nitric oxide and reactive oxygen species by neutrophils and monocytes from septic patients and association with outcomes, Shock, vol.1538, issue.41, pp.18-23, 2011.

M. Gregoire, F. Guilloton, C. Pangault, F. Mourcin, P. Sok et al., Neutrophils trigger a NF-??B dependent polarization of tumor-supportive stromal cells in germinal center B-cell lymphomas, Oncotarget, vol.6, issue.18, pp.16471-87, 2015.
DOI : 10.18632/oncotarget.4106

URL : https://hal.archives-ouvertes.fr/hal-01187405

D. Rittirsch, M. Huber-lang, M. Flierl, and P. Ward, monophosphate-activated protein kinase activation through a high mobility group box 1 protein-dependent mechanism. Molecular medicine Immunodesign of experimental sepsis by cecal ligation and puncture, Nature protocols, vol.184, issue.341, pp.659-6831, 2009.

M. Lotze, K. Tracey, M. Wrona, K. Patel, and P. Wardman, High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal Reactivity of 2',7'-dichlorodihydrofluorescein and dihydrorhodamine 123 and their oxidized forms toward carbonate, nitrogen dioxide, and hydroxyl radicals, Nat Rev Immunol. Free Radic Biol Med, vol.538, issue.362, pp.331-42262, 2005.

J. Zmijewski, S. Banerjee, H. Bae, A. Friggeri, E. Lazarowski et al., Exposure to Hydrogen Peroxide Induces Oxidation and Activation of AMP-activated Protein Kinase, Journal of Biological Chemistry, vol.186, issue.43, pp.33154-64, 2010.
DOI : 10.1002/jcp.20862

E. Stevenson, A. Rubenstein, G. Radin, R. Wiener, and A. Walkey, Two Decades of Mortality Trends Among Patients With Severe Sepsis, Critical Care Medicine, vol.42, issue.3, pp.625-656, 2014.
DOI : 10.1097/CCM.0000000000000026

C. Luyt, A. Combes, C. Deback, M. Aubriot-lorton, A. Nieszkowska et al., Herpes simplex virus lung infection in patients undergoing prolonged mechanical ventilation. American journal of respiratory and critical care medicine, pp.935-977, 2007.
DOI : 10.1164/rccm.200609-1322oc

A. Limaye, K. Kirby, G. Rubenfeld, W. Leisenring, E. Bulger et al., Cytomegalovirus reactivation in critically ill immunocompetent patients, Jama, vol.300, issue.4, pp.413-435, 2008.

Z. Liu, N. Bone, S. Jiang, D. Park, J. Tadie et al., AMP-activated protein kinase and Glycogen Synthase Kinase 3beta modulate the severity of sepsis-induced lung injury. Molecular medicine, p.42, 2015.

A. Achouiti, A. De-vos, C. Van-'t-veer, S. Florquin, M. Tanck et al., Receptor for Advanced Glycation End Products (RAGE) Serves a Protective Role during Klebsiella pneumoniae - Induced Pneumonia, PLOS ONE, vol.178, issue.Suppl 1, pp.141000-141043, 2016.
DOI : 10.1371/journal.pone.0141000.t002

URL : http://doi.org/10.1371/journal.pone.0141000

G. Fossati, D. Moulding, D. Spiller, R. Moots, M. White et al., The Mitochondrial Network of Human Neutrophils: Role in Chemotaxis, Phagocytosis, Respiratory Burst Activation, and Commitment to Apoptosis, The Journal of Immunology, vol.170, issue.4, pp.1964-72, 2003.
DOI : 10.4049/jimmunol.170.4.1964

S. Jiang, D. Park, W. Stigler, J. Creighton, S. Ravi et al., Mitochondria and AMP-activated Protein Kinase-dependent Mechanism of Efferocytosis, Journal of Biological Chemistry, vol.90, issue.36, pp.26013-26039, 2013.
DOI : 10.4049/jimmunol.1101500

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3764806

L. Yang, M. Xie, M. Yang, Y. Yu, S. Zhu et al., PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis, Nature Communications, vol.2008, pp.4436-4482, 2014.
DOI : 10.1016/j.cmet.2011.04.008

M. Entezari, D. Weiss, R. Sitapara, L. Whittaker, M. Wargo et al., Inhibition of high-mobility group box 1 protein (HMGB1) enhances bacterial clearance and protects against Pseudomonas Aeruginosa pneumonia in cystic fibrosis Emergence of autoantibodies to HMGB1 is associated with survival in patients with septic shock. Intensive care medicine, Molecular medicine, vol.1837, issue.476, pp.477-85957, 2011.

G. Sims, D. Rowe, S. Rietdijk, R. Herbst, and A. Coyle, HMGB1 and RAGE in inflammation and cancer. Annual review of immunology, pp.367-88, 2010.
DOI : 10.1146/annurev.immunol.021908.132603

P. Leblanc, T. Doggett, J. Choi, M. Hancock, Y. Durocher et al., An Immunogenic Peptide in the A-box of HMGB1 Protein Reverses Apoptosis-induced Tolerance through RAGE Receptor, Journal of Biological Chemistry, vol.1793, issue.11, pp.7777-86, 2014.
DOI : 10.1016/j.bbamcr.2008.11.016