Synthesis and magnetic properties of nanostructured metallic Co, Mn and Ni oxide materials obtained from solid-state metal-macromolecular complex precursors - Université de Rennes Accéder directement au contenu
Article Dans Une Revue RSC Advances Année : 2017

Synthesis and magnetic properties of nanostructured metallic Co, Mn and Ni oxide materials obtained from solid-state metal-macromolecular complex precursors

C. Diaz
  • Fonction : Auteur correspondant
M. L. Valenzuela
  • Fonction : Auteur
M. A. Laguna-Bercero
  • Fonction : Auteur correspondant
A. Orera
  • Fonction : Auteur
D. Bobadilla
  • Fonction : Auteur
S. Abarca
  • Fonction : Auteur

Résumé

The simple reaction of chitosan with metallic salts yields (chitosan) (MLn)(x), MLn = MnCl2, CoCl2, NiCl2, macromolecular complexes which, after a thermal treatment at 800 degrees C under air, give nanostructured Mn2O3, Co3O4 and NiO. The polymer acts as a template in the solid state, which is eliminated after the combustion process. At an intermediate stage, a layered graphitic carbon matrix was observed by HRTEM over the grown metal oxides. A mechanism for the growth of nanostructured oxides is discussed, including Raman studies. The nanostructured Mn2O3, Co3O4 and NiO particles grow over graphite layers and the solid-state role of chitosan is crucial for the formation of this graphite substrate. An antiferromagnetic transition was observed in Co3O4 nanoparticles, with T-N = 38 K, whereas NiO nanoparticles behave as a superparamagnetic material with a blocking temperature above 300 K.

Domaines

Chimie

Dates et versions

hal-01542756 , version 1 (20-06-2017)

Identifiants

Citer

C. Diaz, M. L. Valenzuela, M. A. Laguna-Bercero, A. Orera, D. Bobadilla, et al.. Synthesis and magnetic properties of nanostructured metallic Co, Mn and Ni oxide materials obtained from solid-state metal-macromolecular complex precursors. RSC Advances, 2017, 7 (44), pp.27729--27736. ⟨10.1039/c7ra00782e⟩. ⟨hal-01542756⟩
38 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More