=. ). 90°, =. , =. 90°, and . Volume, 71073 Å, Crystal system: Monoclinic, space group, P 21/n, Unit cell dimensions: a = 13 Calculated density: 1.431 g.cm 3 , Absorption coefficient 0.267 mm -1 , F(000): 1024, Crystal size: 0.268 x 0.154 x 0.147 mm, Theta range for data collection: 3.04 to 26.99°, Limiting indices: -14?h?17, -11?k?13, - 22?l?22, Reflections collected / unique: 17883 Absorption correction: none, Refinement method: Full-matrix least-squares on F 2 , Data / restraints / parameters: 5013 mg, 0.651mmol) and TCNE (83 mg, 0.651 mmol) in CH 2 Cl 2 (10 mL) was stirred at r.t. for 18 h. The mixture was concentrated under reduced pressure and purified by column chromatography (petroleum ether:Et 2 O 1:0 to 1:1) to give TCBD 22 (285 mg, 0.650 mmol, 99%) as a brown solid, The spectroscopic data are similar to those reported in the literature. [7] Crystal data: Crystallogenesis: liquid diffusion from a CH 2 Cl 2 solution into cyclohexane; Formula: C 26 H 17 N 5 O 2 S 2 H NMR (400 MHz, CDCl 3 ) ? 7.64 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.9 Hz, 2H) (s, 9H). 13 C NMR (100 MHz, pp.2890-2300

2. Hz, 51 (s, 3H) 13 C NMR (100 MHz, CDCl 3 ) ? 165.2 (t, J C-F = 128 Hz), 158.5, 147.5, 133.1, 131.5 (d, J = 9.4 Hz), 131.1, 131.0, 129.6, 129 Crystal data: Crystallogenesis: liquid diffusion from a CH 2 Cl 2 solution into cyclohexane; Formula: C 31 H 24 FN 5 O 2 S, Formula weight: 549.61, Temperature: 150 K, Wavelength: 1.54184 Å, Crystal system: Triclinic, space group: P -1 , Unit cell dimensions: a = 10) Å, ? = 115 Absorption correction: Semi-empirical from equivalents, Goodness-offit on F 2 : 1.054, Final R indices [I>2sigma(I)]: R1 = 0.0522, pp.4-7952, 2002.

2. Hz, Hz, 2H) 13 C NMR (100 MHz, CDCl 3 ) ? 16220) nm. Crystal data: Crystallogenesis: liquid diffusion from a CH 2 Cl 2 solution into cyclohexane, Formula: C 26 H 13, (ESI) calculated for C 26 H 14 N 5 [M+H] + 396.12492, found 396.1249. UV-visible spectroscopy (CH 2 Cl 2 ): ? max) Å, ? = 90°, ? = 90°, ? = 90°, pp.75-82

. Mg, Crystal size: 0.2708 x 0.0668 x 0.0367 mm 3 , Theta range for data collection: 4.194 to 72.112°, Limiting indices: -9<=h<=6, - 14<=k<=13, -26<=l<=25, Reflections collected / unique: 8409 / 4043 [R(int) = 0.0220], Completeness to theta = 67.684°, 99.9 %, Absorption correction: Gaussian, Max. and min. transmission: 0.979 and 0.910, Refinement method: Full-matrix least-squares on F2, Data / restraints / parameters: 4043 Goodness-of-fit on F2: 1.052, Final R indices [I>2sigma(I)]: R1 Absolute structure parameter Extinction coefficient, p.816

M. Betou and A. , Sallustrau thank the Région Bretagne for a post-doctoral grant, J.-C

M. Kivala and F. Diederich, Acetylene-Derived Strong Organic Acceptors for Planar and Nonplanar Push???Pull Chromophores, Accounts of Chemical Research, vol.42, issue.2, pp.235-248, 1994.
DOI : 10.1021/ar8001238

H. C. Kolb, M. G. Finn, and K. B. Sharpless, Click Chemistry: Diverse Chemical Function from a Few Good Reactions, Angewandte Chemie International Edition, vol.36, issue.6, pp.2004-2021, 2001.
DOI : 10.1016/B978-008096518-5.00095-2

G. Evano, A. Coste, and K. Jouvin, Ynamides: Versatile Tools in Organic Synthesis, Angewandte Chemie International Edition, vol.47, issue.16, pp.2840-2859, 2010.
DOI : 10.1039/b820291e

H. Dekorver, A. G. Li, R. Lohse, Z. Hayashi, Y. Lu et al., Ynamides: A Modern Functional Group for the New Millennium, Chemical Reviews, vol.110, issue.9, pp.5064-5106, 2010.
DOI : 10.1021/cr100003s

M. Betou, N. Kerisit, E. Meledje, Y. R. Leroux, C. Katan et al., High-Yield Formation of Substituted Tetracyanobutadienes from Reaction of Ynamides with Tetracyanoethylene, Chemistry - A European Journal, vol.420, issue.31, pp.9553-9557, 2014.
DOI : 10.1016/S0022-0728(96)04777-8

URL : https://hal.archives-ouvertes.fr/hal-01017020

C. M. Reisinger, P. Rivera-fuentes, S. Lampart, W. B. Schweizer, and F. Diederich, Cascade Pericyclic Reactions of Alleno-Acetylenes: Facile Access to Highly Substituted Cyclobutene, Dendralene, Pentalene, and Indene Skeletons, Chemistry - A European Journal, vol.111, issue.46, pp.12906-12911, 2011.
DOI : 10.1021/ja00192a033

J. R. Dunetz and R. L. Danheiser, Copper-Mediated N-Alkynylation of Carbamates, Ureas, and Sulfonamides. A General Method for the Synthesis of Ynamides, Organic Letters, vol.5, issue.21, pp.4011-4014, 2003.
DOI : 10.1021/ol035647d

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897059

T. Hamada, X. Ye, and S. S. Stahl, Copper-Catalyzed Aerobic Oxidative Amidation of Terminal Alkynes:?? Efficient Synthesis of Ynamides, Journal of the American Chemical Society, vol.130, issue.3, pp.833-835, 2008.
DOI : 10.1021/ja077406x

A. R. Katritzky and W. H. Ramer, Heterocyclic ynammonium salts, The Journal of Organic Chemistry, vol.50, issue.6, pp.852-856, 1985.
DOI : 10.1021/jo00206a026

C. Dengiz, B. Breiten, J. Gisselbrecht, C. Boudon, N. Trapp et al., -Dendrimer-Type Multivalent Donor???Acceptor Systems, The Journal of Organic Chemistry, vol.80, issue.2, pp.882-896, 2015.
DOI : 10.1021/jo502367h

J. Ohshita, T. Kajihara, D. Tanaka, and Y. Ooyama, Preparation of poly(disilanylenetetracyanobutadienyleneoligothienylene)s as new donor???acceptor type organosilicon polymers, Journal of Organometallic Chemistry, vol.749, pp.255-260, 2014.
DOI : 10.1016/j.jorganchem.2013.10.007

G. M. Sheldrick, SHELXL97. Program for the refinement of crystal structures, 1997.