A. Rodenas, Three-dimensional mid-infrared photonic circuits in chalcogenide glass, Optics Letters, vol.37, issue.3, pp.392-394, 2012.
DOI : 10.1364/OL.37.000392

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications, IEEE Journal of Selected Topics in Quantum Electronics, vol.15, issue.1, pp.114-1192010245, 2008.
DOI : 10.1109/JSTQE.2008.2010245

B. J. Eggleton, B. Luther-davies, K. Richardson, and . Chalcogenide-photonics, Chalcogenide photonics, Nature Photonics, vol.19, issue.3, pp.141-14810, 2011.
DOI : 10.1364/OE.19.021475

M. L. Anne, Chalcogenide Glass Optical Waveguides for Infrared Biosensing. Sensors, vol.9, pp.7398-7411, 2009.

A. B. Seddon, physica status solidi (b), vol.72, issue.10, pp.1020-102710, 2013.
DOI : 10.1158/0008-5472.CAN-11-4061

L. Corvec and M. , Fast and Non-Invasive Medical Diagnostic Using Mid Infrared Sensor, IRBM, vol.37, issue.2, pp.116-123, 2016.
DOI : 10.1016/j.irbm.2016.03.003

URL : https://hal.archives-ouvertes.fr/hal-01296780

Z. Han, On-chip mid-infrared gas detection using chalcogenide glass waveguide, Applied Physics Letters, vol.108, issue.14, pp.141106-141116, 2016.
DOI : 10.1142/S0218863510005042

V. Singh, Mid-infrared materials and devices on a Si platform for optical sensing, Science and Technology of Advanced Materials, vol.15, issue.1, p.14603, 2014.
DOI : 10.1016/j.snb.2013.04.065

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films, Journal of Non-Crystalline Solids, vol.354, issue.19-25, pp.2757-2762095, 2008.
DOI : 10.1016/j.jnoncrysol.2007.09.095

G. Aldo, Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the Mid-Infrared, Sensors and Actuators B: Chemical, vol.242, pp.842-848, 2017.

E. Baudet, Selenide sputtered films development for MIR environmental sensor, Optical Materials Express, vol.6, issue.8, pp.2616-2627, 2016.
DOI : 10.1364/OME.6.002616

URL : https://hal.archives-ouvertes.fr/hal-01367204

J. Hu, Flexible integrated photonics: where materials, mechanics and optics meet [Invited], Optical Materials Express, vol.3, issue.9, pp.1313-1331, 2013.
DOI : 10.1364/OME.3.001313

M. Merklein, Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits, Nature Communications, vol.8, issue.1, pp.10-1038, 2015.
DOI : 10.1364/JOSAB.8.000403

J. Charrier, Evanescent wave optical micro-sensor based on chalcogenide glass, Sensors and Actuators B: Chemical, vol.173, pp.468-476056, 2012.
DOI : 10.1016/j.snb.2012.07.056

URL : https://hal.archives-ouvertes.fr/hal-00743261

C. C. Huang and D. W. Hewak, High-purity germanium-sulphide glass for optoelectronic applications synthesised by chemical vapour deposition, Electronics Letters, vol.40, issue.14, pp.863-865, 2004.
DOI : 10.1049/el:20045141

E. Marquez, Controlling the optical constants of thermally-evaporated Ge10Sb30S60 chalcogenide glass films by photodoping with silver, Journal of Non-Crystalline Solids, vol.274, issue.1-3, pp.62-68, 2000.
DOI : 10.1016/S0022-3093(00)00184-8

Z. G. Ivanova, K. Koughia, D. Tonchev, J. C. Pivin, and S. O. Kasap, Photoluminescence in Er-implanted amorphous Ge-S-Ga thin films, Journal of Optoelectronics and Advanced Materials, vol.7, pp.1271-1276, 2005.
URL : https://hal.archives-ouvertes.fr/in2p3-00024805

C. Vigreux, films: Relevance to the development of infrared waveguides, physica status solidi (a), vol.81, issue.200, pp.932-93710, 2014.
DOI : 10.1103/PhysRevB.81.174206

URL : https://hal.archives-ouvertes.fr/hal-00931883

K. E. Youden, Pulsed laser deposition of Ga???La???S chalcogenide glass thin film optical waveguides, Applied Physics Letters, vol.27, issue.12, pp.1601-1603, 1993.
DOI : 10.1364/AO.12.000755

P. Nemec, Pulsed laser deposition of pure and praseodymium-doped Ge???Ga???Se amorphous chalcogenide films, Optical Materials, vol.15, issue.3, pp.191-197, 2000.
DOI : 10.1016/S0925-3467(00)00035-5

M. Frumar, Thin chalcogenide films prepared by pulsed laser deposition ??? new amorphous materials applicable in optoelectronics and chemical sensors, Journal of Non-Crystalline Solids, vol.352, issue.6-7, pp.544-561, 2006.
DOI : 10.1016/j.jnoncrysol.2005.11.043

V. Nazabal, Dysprosium doped amorphous chalcogenide films prepared by pulsed laser deposition, Optical Materials, vol.29, issue.2-3, pp.273-278, 2006.
DOI : 10.1016/j.optmat.2005.08.034

URL : https://hal.archives-ouvertes.fr/hal-00868029

A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-davies, Low-loss waveguides in ultrafast laser-deposited As_2S_3 chalcogenide films, Journal of the Optical Society of America B, vol.20, issue.9, pp.1844-1852, 2003.
DOI : 10.1364/JOSAB.20.001844

URL : https://digital.library.adelaide.edu.au/dspace/bitstream/2440/34943/1/hdl_34943.pdf

S. Ramachandran and S. G. Bishop, Excitation of Er3+ emission by host glass absorption in sputtered films of Er-doped Ge10As40Se25S25 glass, Applied Physics Letters, vol.73, issue.22, p.3196, 1998.
DOI : 10.1103/PhysRevB.15.2278

V. Nazabal, Sputtering and Pulsed Laser Deposition for Near- and Mid-Infrared Applications: A Comparative Study of Ge25Sb10S65 and Ge25Sb10Se65 Amorphous Thin Films, International Journal of Applied Ceramic Technology, vol.226, issue.[1-2], pp.990-1000, 2011.
DOI : 10.1016/S0022-3093(97)00493-6

URL : https://hal.archives-ouvertes.fr/hal-00564132

J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass, Optics Express, vol.14, issue.5, pp.1797-1803, 2006.
DOI : 10.1364/OE.14.001797

P. Nemec, Pulsed laser deposited amorphous chalcogenide and alumino-silicate thin films and their multilayered structures for photonic applications, Thin Solid Films, vol.539, pp.226-232, 2013.
DOI : 10.1016/j.tsf.2013.04.013

URL : https://hal.archives-ouvertes.fr/hal-00878948

V. Nazabal, Sputtering and Pulsed Laser Deposition for Near- and Mid-Infrared Applications: A Comparative Study of Ge25Sb10S65 and Ge25Sb10Se65 Amorphous Thin Films, International Journal of Applied Ceramic Technology, vol.226, issue.[1-2], pp.990-1000, 2011.
DOI : 10.1016/S0022-3093(97)00493-6

URL : https://hal.archives-ouvertes.fr/hal-00564132

V. Nazabal, Chalcogenide coatings of Ge_15Sb_20S_65 and Te_20As_30Se_50, Applied Optics, vol.47, issue.13, pp.114-123, 2008.
DOI : 10.1364/AO.47.00C114

URL : https://hal.archives-ouvertes.fr/hal-00200880

J. Charrier, Sulphide Ga[sub x]Ge[sub 25???x]Sb[sub 10]S[sub 65(x=0,5)] sputtered films: Fabrication and optical characterizations of planar and rib optical waveguides, Journal of Applied Physics, vol.10, issue.257, p.73110, 2008.
DOI : 10.1364/OE.16.004981

A. B. Seddon, Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing, Optical Engineering, vol.53, issue.7, 2014.
DOI : 10.1117/1.OE.53.7.071824

URL : https://www.spiedigitallibrary.org/journals/Optical-Engineering/volume-53/issue-7/071824/Mid-infrared-integrated-optics--versatile-hot-embossing-of-mid/10.1117/1.OE.53.7.071824.pdf

V. Mittal, J. S. Wilkinson, and G. S. Murugan, High-contrast GeTe4 waveguides for mid-infrared biomedical sensing applications, Proc. SPIE 8988, Integrated Optics: Devices, Materials, and Technologies XVIII, p.102036972, 1117.
DOI : 10.1117/12.2036972

URL : https://eprints.soton.ac.uk/363173/1/__userfiles.soton.ac.uk_Users_nl2_mydesktop_Slabakova_SPIEpaper_Final_300114.pdf

D. A. Turnbull, J. S. Sanghera, V. Nguyen, and I. D. Aggarwal, Fabrication of waveguides in sputtered films of GeAsSe glass via photodarkening with above bandgap light, Materials Letters, vol.58, issue.1-2, pp.51-54, 2003.
DOI : 10.1016/S0167-577X(03)00413-0

V. Balan, C. Vigreux, and A. Pradel, Chalcogenide thin films deposited by radio-frequency sputtering, Journal of Optoelectronics and Advanced Materials, vol.6, pp.875-882, 2004.

F. Verger, RF sputtered amorphous chalcogenide thin films for surface enhanced infrared absorption spectroscopy, Optical Materials Express, vol.3, issue.12, pp.2112-2131, 2013.
DOI : 10.1364/OME.3.002112

URL : https://hal.archives-ouvertes.fr/hal-00780091

P. N?mec, Optical properties of (GeSe2)100???x(Sb2Se3)x glasses in near- and middle-infrared spectral regions, Materials Research Bulletin, vol.51, pp.176-179, 2014.
DOI : 10.1016/j.materresbull.2013.11.050

M. Olivier, Structure, nonlinear properties, and photosensitivity of (GeSe_2)_100-x(Sb_2Se_3)_x glasses, Optical Materials Express, vol.4, issue.3, pp.525-540000525, 2014.
DOI : 10.1364/OME.4.000525

URL : https://hal.archives-ouvertes.fr/hal-01058351

E. Baudet, Structural analysis of RF sputtered Ge-Sb-Se thin films by Raman and X-ray photoelectron spectroscopies, Journal of Non-Crystalline Solids, vol.444, pp.64-72017, 2016.
DOI : 10.1016/j.jnoncrysol.2016.04.017

URL : https://hal.archives-ouvertes.fr/hal-01319062

A. Gutierrez-arroyo, Optical characterization at 77 ??m of an integrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared, Optics Express, vol.24, issue.20, pp.23109-23117, 2016.
DOI : 10.1364/OE.24.023109

E. Baudet, MIR attenuated total reflection sensor for the detection of aromatic hydrocarbons in water, 2017.

D. H. Doehlert, Uniform Shell Designs, Applied Statistics, vol.19, issue.3, p.231, 1970.
DOI : 10.2307/2346327

D. Mathieu, J. Nony, R. Phan-tan-luu, and N. Software, , 2000.

D. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, pp.237-286, 2010.

S. Rossnagel, Handbook of Thin-Film Deposition Processes and Techniques -Principles, Methods, Equipment and Applications (2nd Edition)-chap 8-Sputtering and Sputter Deposition, 2002.

K. Wasa, Handbook of Sputtering Technology, 2012.

P. Sigmund, Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets, Physical Review, vol.126, issue.2, p.383, 1969.
DOI : 10.1103/PhysRev.126.1267

M. P. Seah, An accurate semi-empirical equation for sputtering yields, II: for neon, argon and xenon ions. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with, Materials and Atoms, vol.229, pp.348-358, 2005.

M. P. Seah, C. A. Clifford, F. M. Green, and I. S. Gilmore, An accurate semi-empirical equation for sputtering yields I: for argon ions, Surface and Interface Analysis, vol.87, issue.94, pp.444-45810, 2005.
DOI : 10.1007/3540105212_7

N. Matsunami, Energy-Dependence of the Ion-Induced Sputtering Yields of Monatomic Solids. Atomic Data and Nuclear Data Tables 31, pp.1-8010, 1984.

Y. Yamamura and H. Tawara, Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence. Atomic Data and Nuclear Data Tables 62, pp.149-2530005, 1996.

S. Sharda, N. Sharma, P. Sharma, and V. Sharma, Finger prints of chemical bonds in Sb???Se???Ge and Sb???Se???Ge???In glasses: A Far-IR study, Journal of Non-Crystalline Solids, vol.362, pp.136-139035, 2013.
DOI : 10.1016/j.jnoncrysol.2012.10.035

K. J. Rao and R. Mohan, 3500 | DOI:10.1038/s41598-017-03678-w 52 Chemical bond approach to determining conductivity band gaps in amorphous chalcogenides and pnictides. Solid State Commun, pp.1065-1068, 1981.

L. Tichý and H. Tichá, Covalent bond approach to the glass-transition temperature of chalcogenide glasses, Journal of Non-Crystalline Solids, vol.189, issue.1-2, pp.141-14610, 1995.
DOI : 10.1016/0022-3093(95)00202-2

J. Adam and X. H. Zhang, Chalcogenide Glasses: Preparation, properties and application, Electronic and Optical Materials, 2014.

M. W. Thompson, II. The energy spectrum of ejected atoms during the high energy sputtering of gold, Philosophical Magazine, vol.37, issue.152, p.14786436808227358, 1968.
DOI : 10.1103/PhysRev.102.690

URL : https://hal.archives-ouvertes.fr/in2p3-00714295

J. A. Woollam, Characterization and Metrology for Ulsi Technology 2000, International Conference AIP Conference Proceedings, pp.511-518, 2001.

G. E. Jellison and F. A. Modine, Parameterization of the optical functions of amorphous materials in the interband region, Applied Physics Letters, vol.253, issue.3, pp.2137-213710, 1996.
DOI : 10.1063/1.118064

A. S. Ferlauto, Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics, Journal of Applied Physics, vol.557, issue.5, pp.2424-2436, 2002.
DOI : 10.1103/PhysRevB.38.10623

URL : https://hal.archives-ouvertes.fr/hal-02120549

P. Nemec, Photo-stability of pulsed laser deposited Ge_xAs_ySe_100-x-y amorphous thin films, Optics Express, vol.18, issue.22, pp.22944-22957, 2010.
DOI : 10.1364/OE.18.022944