D. Hanahan and R. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-674, 2011.
DOI : 10.1016/j.cell.2011.02.013

D. Ohlund, E. Elyada, and D. Tuveson, Fibroblast heterogeneity in the cancer wound, The Journal of Experimental Medicine, vol.1, issue.8, pp.1503-1523, 2014.
DOI : 10.1038/jid.2009.130

P. Cirri and P. Chiarugi, Cancer associated fibroblasts: the dark side of the coin

S. Kidd, E. Spaeth, and K. Watson, Origins of the Tumor Microenvironment: Quantitative Assessment of Adipose-Derived and Bone Marrow?Derived Stroma, PLoS ONE, vol.21, issue.2, p.30563, 2012.
DOI : 10.1371/journal.pone.0030563.s004

S. Turley, V. Cremasco, and J. Astarita, Immunological hallmarks of stromal cells in the tumour microenvironment, Nature Reviews Immunology, vol.72, issue.11, pp.669-682, 2015.
DOI : 10.1158/0008-5472.CAN-12-1377

R. Roozendaal and R. Mebius, Stromal Cell???Immune Cell Interactions, Annual Review of Immunology, vol.29, issue.1, pp.23-43, 2011.
DOI : 10.1146/annurev-immunol-031210-101357

A. Aguzzi, J. Kranich, and N. Krautler, Follicular dendritic cells: origin, phenotype, and function in health and disease, Trends in Immunology, vol.35, issue.3, pp.105-113, 2014.
DOI : 10.1016/j.it.2013.11.001

A. Fletcher, S. Acton, K. 9. Knoblich, J. Shields, I. Kourtis et al., Lymph node fibroblastic reticular cells in health and disease Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21 Inflammation recapitulates the ontogeny of lymphoid stromal cells Pathogenesis of follicular lymphoma, Nat Rev Immunol. Science. J Immunol. J Clin Invest, vol.15328182122, issue.1110, pp.350-361749, 2009.

P. Ame-thomas and K. Tarte, The yin and the yang of follicular lymphoma cell niches: Role of microenvironment heterogeneity and plasticity, Seminars in Cancer Biology, vol.24, pp.23-32, 2014.
DOI : 10.1016/j.semcancer.2013.08.001

URL : https://hal.archives-ouvertes.fr/inserm-00866220

P. Ame-thomas, L. Priol, J. Yssel, and H. , Characterization of intratumoral follicular helper T cells in follicular lymphoma: role in the survival of malignant B cells, Leukemia, vol.24, issue.5, pp.1053-1063, 2012.
DOI : 10.1101/gad.1874010

URL : https://hal.archives-ouvertes.fr/inserm-00666043

P. Ame-thomas, S. Hoeller, and C. Artchounin, CD10 delineates a subset of human IL-4 producing follicular helper T cells involved in the survival of follicular lymphoma B cells, Blood, vol.125, issue.15, pp.2381-2385, 2015.
DOI : 10.1182/blood-2015-02-625152

URL : https://hal.archives-ouvertes.fr/hal-01128175

C. Pangault, P. Ame-thomas, and P. Ruminy, Follicular lymphoma cell niche: identification of a preeminent IL-4-dependent TFH?B cell axis, Leukemia, vol.95, issue.12, pp.2080-2089, 2010.
DOI : 10.4049/jimmunol.0803733

URL : https://hal.archives-ouvertes.fr/inserm-00570274

R. Amin, F. Mourcin, and F. Uhel, DC-SIGN-expressing macrophages trigger activation of mannosylated IgM B-cell receptor in follicular lymphoma, Blood, vol.126, issue.16, pp.1911-1920, 2015.
DOI : 10.1182/blood-2015-04-640912

URL : https://hal.archives-ouvertes.fr/hal-01187301

S. Rawal, F. Chu, and M. Zhang, Cross Talk between Follicular Th Cells and Tumor Cells in Human Follicular Lymphoma Promotes Immune Evasion in the Tumor Microenvironment, The Journal of Immunology, vol.190, issue.12, pp.6681-6693, 2013.
DOI : 10.4049/jimmunol.1201363

F. Mourcin, C. Pangault, R. Amin-ali, P. Ame-thomas, K. Tarte et al., Stromal cell contribution to human follicular lymphoma pathogenesis Entourage: the immune microenvironment following follicular lymphoma, Front Immunol. Blood Cancer J, vol.32, issue.1, p.52, 2012.

S. Sangaletti, C. Tripodo, and P. Portararo, Stromal niche communalities underscore the contribution of the matricellular protein SPARC to B-cell development and lymphoid malignancies The stromal composition of malignant lymphoid aggregates in bone marrow: variations in architecture and phenotype in different B-cell tumours, Oncoimmunology. Br J Haematol, vol.3117, issue.213, pp.569-576, 2002.

F. Guilloton, G. Caron, and C. Menard, Mesenchymal stromal cells orchestrate follicular lymphoma cell niche through the CCL2-dependent recruitment and polarization of monocytes, Blood, vol.119, issue.11, pp.2556-2567, 2012.
DOI : 10.1182/blood-2011-08-370908

URL : https://hal.archives-ouvertes.fr/inserm-00665887

M. Gregoire, F. Guilloton, and C. Pangault, Neutrophils trigger a NF-kappaB dependent polarization of tumor-supportive stromal cells in germinal center B-cell lymphomas Stromal cell-derived factor-1 as a chemoattractant for follicular center lymphoma B cells Cooperative function of CCR7 and lymphotoxin in the formation of a lymphoma-permissive niche within murine secondary lymphoid organs, Bigot N, Mouche A, Preti M, et al. Hypoxia Differentially Modulates the Genomic Stability of Clinical-Grade ADSCs and BM-MSCs in Long-Term Culture. Stem Cells, pp.16471-16487628, 2000.

M. Boice, D. Salloum, and F. Mourcin, Loss of the HVEM Tumor Suppressor in Lymphoma and Restoration by Modified CAR-T Cells The Prognostic Impact of CD163- Positive Macrophages in Follicular Lymphoma: A Study from the BC Cancer Agency and the Lymphoma Study Association, Cell. Clin Cancer Res, vol.16721, issue.215, pp.405-418, 2015.

P. Ame-thomas, M. Hajjami, H. Monvoisin, and C. , Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: role of stromal cells in follicular lymphoma pathogenesis, Blood, vol.109, issue.2, pp.693-702, 2007.
DOI : 10.1182/blood-2006-05-020800

URL : https://hal.archives-ouvertes.fr/hal-00697066

M. Bombardieri, F. Barone, and D. Lucchesi, Inducible tertiary lymphoid structures, autoimmunity, and exocrine dysfunction in a novel model of salivary gland inflammation in C57BL/6 mice Phenotypic and Morphological Properties of Germinal Center Dark Zone Cxcl12-Expressing Reticular Cells Lymphotoxin-beta receptor signaling through NF-kappaB2-RelB pathway reprograms adipocyte precursors as lymph node stromal cells, al. IL-4 protein expression and basal activation of Erk in vivo in follicular lymphoma, pp.3767-37764781, 2008.

J. Burger, N. Zvaifler, N. Tsukada, G. Firestein, T. Kipps et al., Fibroblast-like synoviocytes support B-cell pseudoemperipolesis via a stromal cell-derived factor-1- and CD106 (VCAM-1)-dependent mechanism Targeting Bruton's tyrosine kinase in B cell malignancies, J Clin Invest. Nat Rev Cancer, vol.10714, issue.354, pp.305-315219, 2001.

J. Hoellenriegel, S. Meadows, and M. Sivina, The phosphoinositide 3'-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia, Blood, vol.118, issue.13, pp.3603-3612, 2011.
DOI : 10.1182/blood-2011-05-352492

M. Buchner, C. Baer, and G. Prinz, Spleen tyrosine kinase inhibition prevents chemokine-and integrin-mediated stromal protective effects in chronic lymphocytic leukemia centre-like versus undifferentiated stromal immunophenotypes in follicular lymphoma, Lectin binding to surface Ig variable regions provides a universal persistent activating signal for follicular lymphoma cells, pp.1902-19104497, 2003.
DOI : 10.1182/blood-2009-07-233692

M. Jarjour, A. Jorquera, and I. Mondor, Fate mapping reveals origin and dynamics of lymph node follicular dendritic cells Germinal center centroblasts transition to a centrocyte phenotype according to a timed program and depend on the dark zone for effective selection, J Exp Med. Immunity, vol.21139, issue.425, pp.1109-1122912, 2013.

V. Cremasco, M. Woodruff, and L. Onder, B cell homeostasis and follicle confines are governed by fibroblastic reticular cells, Nature Immunology, vol.9, issue.10, pp.973-981, 2014.
DOI : 10.1038/ni.1605

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4205585

C. Yang, T. Vogt, and S. Favre, Trapping of naive lymphocytes triggers rapid growth and remodeling of the fibroblast network in reactive murine lymph nodes Mature follicular dendritic cell networks depend on expression of lymphotoxin beta receptor by radioresistant stromal cells and of lymphotoxin beta and tumor necrosis factor by B cells, Proc Natl Acad Sci U S A. J Exp Med, vol.111189, issue.11, pp.109-118159, 1999.

K. Tokoyoda, A. Hauser, T. Nakayama, and A. Radbruch, Organization of immunological memory by bone marrow stroma, Nature Reviews Immunology, vol.205, issue.3, pp.193-200, 2010.
DOI : 10.4049/jimmunol.174.3.1269

B. Anthony, D. Link, L. Dubey, L. Lebon, and I. Mosconi, Regulation of hematopoietic stem cells by bone marrow stromal cells Lymphotoxin-Dependent B Cell-FRC Crosstalk Promotes De Novo Follicle Formation and Antibody Production following Intestinal Helminth Infection, Trends Immunol. Cell Rep, vol.3515, issue.487, pp.32-371527, 2014.

F. Barone, S. Nayar, and J. Campos, IL-22 regulates lymphoid chemokine production and assembly of tertiary lymphoid organs, Proceedings of the National Academy of Sciences, vol.118, issue.2, pp.11024-11029, 2015.
DOI : 10.1038/mi.2009.106

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568258

H. Fleige, S. Ravens, and G. Moschovakis, IL-17-induced CXCL12 recruits B cells and induces follicle formation in BALT in the absence of differentiated FDCs Malignant B cells skew the balance of regulatory T cells and TH17 cells in B-cell non-Hodgkin's lymphoma, J Exp Med. Cancer Res, vol.21169, issue.5113, pp.643-6515522, 2009.

M. Mraz, C. Zent, and A. Church, Bone marrow stromal cells protect lymphoma B-cells from rituximab-induced apoptosis and targeting integrin ?-4-?-1 (VLA-4) with natalizumab can overcome this resistance, British Journal of Haematology, vol.69, issue.1, pp.53-64, 2011.
DOI : 10.1158/0008-5472.CAN-08-4173

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405035

H. Rajnai, C. Bodor, and Z. Balogh, Impact of the reactive microenvironment on the bone marrow involvement of follicular lymphoma, Histopathology, vol.104, issue.6B, pp.66-75, 2012.
DOI : 10.1073/pnas.0702761104

M. Krumbholz, D. Theil, and S. Cepok, Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment, Brain, vol.129, issue.1, pp.200-211, 2006.
DOI : 10.1093/brain/awh680

L. Madge and M. May, Classical NF-?B Activation Negatively Regulates Noncanonical NF-?B-dependent CXCL12 Expression, Journal of Biological Chemistry, vol.177, issue.49, pp.38069-38077, 2010.
DOI : 10.1073/pnas.0707959105

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992241

Q. Zhang, R. Guo, E. Schwarz, B. Boyce, L. Xing et al., TNF inhibits production of stromal cell-derived factor 1 by bone stromal cells and increases osteoclast precursor mobilization from bone marrow to peripheral blood BTK inhibition results in impaired CXCR4 chemokine receptor surface expression, signaling and function in chronic lymphocytic leukemia Targeting the CD20 and CXCR4 pathways in non-hodgkin lymphoma with rituximab and high-affinity CXCR4 antagonist BKT140, Arthritis Res Ther. Leukemia. Clin Cancer Res, vol.103019, issue.5813, pp.833-8433495, 2008.

C. Feig, J. Jones, and M. Kraman, Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer, Proceedings of the National Academy of Sciences, vol.120, issue.6, pp.20212-20217, 2013.
DOI : 10.1172/JCI42002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864274

M. Aguilar-hernandez, M. Blunt, and R. Dobson, IL-4 enhances expression and function of surface IgM in CLL cells, Blood, vol.127, issue.24, pp.3015-3025, 2016.
DOI : 10.1182/blood-2015-11-682906