1. Hzd, 3. Ch, and . Ch, 11 (d, 1H, arom. CH, calixarene, 3 J = 7.5 Hz), 6.05 (d, 1H, arom. CH, calixarene, 3 J = 7.5 Hz), 4.57 and 3, AB spin system, 2H, ArCH 2 Ar, 2 J = 13.5 Hz), 4.45 and 3.17 (AB spin system, 2H, ArCH 2 Ar, 2 J = 14.0 Hz), 4.42 and 3.15 (AB spin system, 2H, ArCH 2 Ar, 2 J = 13.5 Hz), 4.23 and 3.51 (AB spin system, 2H, ArCH 2 Ar, 2 J = 13.5 Hz), pp.3724-3730

1. Ch, 4 mixture, 15 mL) was heated at 40°C for 5 h After cooling to room temperature, the solution was evaporated to dryness and the residue dried overnight under vacuum to afford quantitatively benzophosphole 8 (1.964 g, yield 100 %) 1 H NMR (CDCl 3 , 400 MHz): ? = 7.86 (d, 1H, arom. CH, C 6 H 4 , 3 J = 7.6 Hz), 7.69 (s, 1H, arom. CH, calixarene), Phosphole 8: A solution of phosphole borane 7 (2.000 g, 2.53 mmol) in MeOH/toluene, pp.31-37

. Hz, ); 13 C{ 1 H} NMR (CDCl 3 , 125 MHz): ? = 159.74 (d, arom Cq-O, 3 J(CP) = 11.1 Hz), 158.33 (s, arom Cq-O), 155.27 (s, arom Cq-O), 154.80 (s, arom Cq-O), 152.07-120.73 (arom. C's), 77.03 (s, OCH 2 ), 76.90 (s, OCH 2 ), 76.85 (s, OCH 2 ), 33.14 (d, Pd-CH 2 , 2 J(CP) = 3.0 Hz), 31.82 (s, ArCH 2 Ar), 31.15 (s, ArCH 2 Ar), 30.92 (s, ArCH 2 Ar), pp.7158-7161

. Mhz, 73 (s, PPh) ppm; MS (ESI): m/z = 1022

. Ml-and-then-n-hexane, mL) was added. A white precipitate formed, which was then separated by filtration and dried under vacuum to give complex 11 (0.123 g, yield 95 %). 1 H NMR (CDCl 3 , 500 MHz): ? = 7, p.76

. Hz, 14 (d, 1H, arom. CH, calixarene, 3 J = 6.2 Hz)

1. Ch, 15 mL) was added to a stirred solution of benzophosphole 8 (0.120 g, 0.15 mmol) in CH 2 Cl 2 (15 mL) After stirring at room temperature for 0.5 h, the solution was concentrated to about 2 mL and MeOH (5 mL) was added. A yellow precipitate formed, which was separated by filtration then dried under vacuum (0.081 g, yield 52 %) 1 H NMR (C 6 D 6 , 500 MHz): ? = 8.00-7.95 (m, 2H, arom. CH, PPh), Rhodium complex 12: A solution of15 mmol) in CH 2 Cl 2 J(PH) = 1.5 Hz), 7.62 (d, 1H, arom. CH, calixarene, 3 J = 7.5 Hz), pp.20-27

2. Ch, 17 (s, CH, acac), 4.77 and 4.55 (AB spin system, 2H, ArCH 2 Ar, 2 J = 13, 4.67 and 3.31 (AB spin system, 2H, ArCH 2 Ar, 2 J = 13.7 Hz), 4.55 and 3.17 (AB spin system, 2H, ArCH 2 Ar, 2 J = 13.5 Hz), 4.52 and 3.12 (AB spin system, 2H, ArCH 2 Ar52-3.44 (m, 2H, OCH 2 ), 2.19-2.10 (m, 2H, CH 2 CH 3 ), pp.51-51, 2002.

C. Hz, 88 (s, CO, acac), 184.33 (s, CO, acac), p.94

. Hz, 50 (s34 (s, arom Cq-O), 142.47-120.82 (arom. C's), 100.59 (s, CH, acac), 77.13 (s, OCH 2 ), 76.97 (s, OCH 2 ), 32.13 (s, ArCH 2 Ar), 31.59 (s, ArCH 2 Ar), 31.54 (s, ArCH 2 Ar), pp.699474-699477

. Hz, 03 (s, CH 3, pp.27-40

X. Crystal, Single crystals of 4 suitable for X-ray analysis were obtained by slow diffusion of methanol into a chloroform solution of References, Structure Determination for Gold Complex Coord. Chem. Rev, vol.4, issue.165, pp.93-161, 1997.

R. Paciello, L. Siggel, and M. Röper, Chelated Bisphosphites with a Calix[4]arene Backbone: New Ligands for Rhodium-Catalyzed Low-Pressure Hydroformylation with Controlled Regioselectivity, Angewandte Chemie International Edition, vol.38, issue.13-14, pp.1920-1923, 1999.
DOI : 10.1002/(SICI)1521-3773(19990712)38:13/14<1920::AID-ANIE1920>3.0.CO;2-C

C. Sémeril, D. Jeunesse, L. Matt, and . Toupet, Regioselectivity with Hemispherical Chelators: Increasing the Catalytic Efficiency of Complexes of Diphosphanes with Large Bite Angles, Angewandte Chemie International Edition, vol.31, issue.35, pp.5810-5814, 2006.
DOI : 10.1002/anie.200601978

D. Monnereau, D. Sémeril, L. Matt, and . Toupet, Cavity-Shaped Ligands: Calix[4]arene-Based Monophosphanes for Fast Suzuki-Miyaura Cross-Coupling, Chemistry - A European Journal, vol.31, issue.30, pp.9237-9247, 2010.
DOI : 10.1016/j.tet.2005.09.021

D. Monnereau, D. Sémeril, and . Matt, High efficiency of cavity-based triaryl-phosphines in nickel-catalysed Kumada???Tamao???Corriu cross-coupling, Chemical Communications, vol.130, issue.23, pp.6626-6628, 2011.
DOI : 10.1021/ja807000a

K. Ito, M. P. Schramm, M. Kanaura, M. Ide, N. Endo et al., Synthesis of tri-arylated cyclotriveratrilenes with ortho- and meta-extended functionality, Tetrahedron Letters, vol.57, issue.2, pp.233-236, 2016.
DOI : 10.1016/j.tetlet.2015.12.030

Y. Kuninobu, T. Yoshida, and K. Takai, Palladium-Catalyzed Synthesis of Dibenzophosphole Oxides via Intramolecular Dehydrogenative Cyclization, The Journal of Organic Chemistry, vol.76, issue.18, pp.7370-7376, 2011.
DOI : 10.1021/jo201030j

A. Diemer, J. Berthelot, S. Bayardon, F. R. Jugé, F. Leroux et al., Stereoselective Synthesis of P-Chirogenic Dibenzophosphole???Boranes via Aryne Intermediates, The Journal of Organic Chemistry, vol.77, issue.14, pp.6117-6127, 2012.
DOI : 10.1021/jo3009098

F. Elaieb, A. Hedhli, D. Sémeril, D. Matt, and J. Harrowfield, A Calixarene-Decorated Phosphole Oxide, European Journal of Organic Chemistry, vol.64, issue.18, pp.3103-3108
DOI : 10.1107/S0108767307043930

K. Baba, M. Tobisu, and N. Chatani, Palladium-Catalyzed Direct Synthesis of Phosphole Derivatives from Triarylphosphines through Cleavage of Carbon-Hydrogen and Carbon-Phosphorus Bonds, Angewandte Chemie International Edition, vol.130, issue.45, pp.11892-11895, 2013.
DOI : 10.1021/ja806543s

S. Vuoti, M. Haukka, and J. Purslainen, Mono and dinuclear palladium complexes of o-alkyl substituted arylphosphane ligands: Solvent-dependent syntheses, NMR-spectroscopic characterization and X-ray crystallographic studies, Journal of Organometallic Chemistry, vol.692, issue.22, pp.5044-5052, 2007.
DOI : 10.1016/j.jorganchem.2007.07.052

F. Elaieb, A. Hedhli, D. Sémeril, and D. Matt, Arylcalixarenyl Phosphines in Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling Reactions, European Journal of Organic Chemistry, vol.31, issue.10, pp.1867-1873
DOI : 10.1107/S002188989700945X

C. A. Tolman, Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis, Chemical Reviews, vol.77, issue.3, pp.313-348, 1977.
DOI : 10.1021/cr60307a002

H. C. Su, O. Fadhel, C. J. Yang, T. Y. Cho, C. Fave et al., Toward Functional ??-Conjugated Organophosphorus Materials:?? Design of Phosphole-Based Oligomers for Electroluminescent Devices, Journal of the American Chemical Society, vol.128, issue.3, pp.983-995, 2006.
DOI : 10.1021/ja0567182

URL : https://hal.archives-ouvertes.fr/hal-01090382

R. Usón, A. Laguna, and M. Laguna, (Tetrahydrothiophene)Gold(I) or Gold(III) Complexes, Inorg. Synthesis, vol.26, pp.85-87, 1989.
DOI : 10.1002/9780470132579.ch17

F. R. Hartley, The Chemistry of Platinum and Palladium, 1973.

A. C. Cope and E. C. Friedrich, Electrophilic aromatic substitution reactions by platinum(II) and palladium(II) chlorides on N,N-dimethylbenzylamines, Journal of the American Chemical Society, vol.90, issue.4, pp.909-913, 1968.
DOI : 10.1021/ja01006a012

G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, 1997.

P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields, The Journal of Physical Chemistry, vol.98, issue.45, pp.11623-11627, 1994.
DOI : 10.1021/j100096a001

S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, The Journal of Chemical Physics, vol.16, issue.15, p.154104, 2010.
DOI : 10.1039/b803508c

S. Grimme, L. Ehrlich, and . Goerigk, Effect of the damping function in dispersion corrected density functional theory, Journal of Computational Chemistry, vol.22, issue.7, pp.1456-1465, 2011.
DOI : 10.1088/0953-8984/22/2/022201

E. Van-lenthe, A. Ehlers, and E. J. Baerends, Geometry optimizations in the zero order regular approximation for relativistic effects, The Journal of Chemical Physics, vol.2, issue.18, pp.8943-8953, 1999.
DOI : 10.1021/ic00322a027

A. Schäfer, H. Horn, and R. Ahlrichs, Fully optimized contracted Gaussian basis sets for atoms Li to Kr, The Journal of Chemical Physics, vol.78, issue.4, pp.2571-2577, 1992.
DOI : 10.1016/S0092-640X(74)80016-1

K. Eichkorn, F. Weigend, O. Treutler, and R. Ahlrichs, Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials, Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), vol.97, issue.1-4, pp.119-124, 1997.
DOI : 10.1007/s002140050244

J. Contreras-garcia, E. R. Johnson, S. Keinan, R. Chaudret, J. P. Piquemal et al., NCIPLOT: A Program for Plotting Noncovalent Interaction Regions, Journal of Chemical Theory and Computation, vol.7, issue.3, pp.625-632, 2011.
DOI : 10.1021/ct100641a