J. Wackerle, Shock???Wave Compression of Quartz, Journal of Applied Physics, vol.10, issue.3, pp.922-937, 1962.
DOI : 10.1029/JZ067i001p00419

L. M. Barker and R. E. Hollenbach, Shock???Wave Studies of PMMA, Fused Silica, and Sapphire, Journal of Applied Physics, vol.13, issue.10, pp.4208-4226, 1970.
DOI : 10.1063/1.1709181

C. S. Alexander, L. C. Chhabildas, W. D. Reinhart, and D. W. Templeton, Changes to the shock response of fused quartz due to glass modification, International Journal of Impact Engineering, vol.35, issue.12, pp.1376-1385, 2008.
DOI : 10.1016/j.ijimpeng.2008.07.019

A. M. Rubenchik and M. D. Feit, Structural Modifications in Fused Silica due to Laserdamage-induced Shock Compression, Proc. SPIE, pp.108-116, 2002.

S. H. Risbud and S. H. Garofalini, Transformations in the Medium-range Order of Fused Silica under High Pressure, Phys. Rev. Lett, p.91, 2003.

R. Su, M. Xiang, J. Chen, S. Jiang, and H. Wei, Molecular dynamics simulation of shock induced ejection on fused silica surface, Journal of Applied Physics, vol.115, issue.19, 2014.
DOI : 10.1364/OME.3.000001

J. Wang, A. Rajendran, and A. Dongare, Atomic scale modeling of shock response of fused silica and ??-quartz, Journal of Materials Science, vol.77, issue.18, pp.8128-8141, 2015.
DOI : 10.1103/PhysRevLett.77.3865

S. Izvekov and B. M. Rice, Mechanism of densification in silica glass under pressure as revealed by a bottom-up pairwise effective interaction model, The Journal of Chemical Physics, vol.49, issue.3, p.134508, 2012.
DOI : 10.1080/00318087508228690

J. J. Erpenbeck, Molecular dynamics of detonation. I. Equation of state and Hugoniot curve for a simple reactive fluid, Physical Review A, vol.85, issue.10, pp.6406-6416, 1992.
DOI : 10.1063/1.451426

F. Barmes, L. Soulard, and M. Mareschal, Molecular dynamics of shock-wave induced structural changes in silica glasses, Physical Review B, vol.19, issue.36, p.224108, 2006.
DOI : 10.1063/1.166314

J. Maillet and G. Stoltz, Sampling Constraints in Average: The Example of Hugoniot Curves, Applied Mathematics Research eXpress, p.4, 2008.
DOI : 10.1093/amrx/abn004

URL : https://hal.archives-ouvertes.fr/hal-00293145

J. Benier, Observation of the Shock Wave Propagation Induced by a High-Power Laser Irradiation into an Epoxy Material, J. Phys. D: Appl. Phys, 2013.

M. Boustie, Soda-lime Glass Behavior under Laser Shock, APS Shock Compression of Condensed Matter Meeting Abstracts, p.6005, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01518499

L. M. Barker, The Development of the VISAR, and its use in Shock Compression Science. Shock Compression of Condensed Matter-1999, pp.11-18, 2000.

T. De-rességuier and F. Cottet, Experimental and numerical study of laser induced spallation in glass, Journal of Applied Physics, vol.6, issue.8, pp.3756-3761, 1995.
DOI : 10.1063/1.335781

B. W. Van-beest, G. J. Kramer, and R. A. Van-santen, calculations, Physical Review Letters, vol.123, issue.16, pp.1955-1958, 1990.
DOI : 10.1063/1.1703099

A. Carré, J. Horbach, S. Ispas, and W. Kob, New fitting scheme to obtain effective potential from Car-Parrinello molecular-dynamics simulations: Application to silica, EPL (Europhysics Letters), vol.82, issue.1, 2008.
DOI : 10.1209/0295-5075/82/17001

R. Car and M. Parrinello, Unified Approach for Molecular Dynamics and Density-Functional Theory, Physical Review Letters, vol.26, issue.22, pp.2471-2474, 1985.
DOI : 10.1103/PhysRevB.26.3259

B. J. Cowen and M. S. El-genk, On force fields for molecular dynamics simulations of crystalline silica, Computational Materials Science, vol.107, pp.88-101, 2015.
DOI : 10.1016/j.commatsci.2015.05.018

T. F. Soules, G. H. Gilmer, M. J. Matthews, J. S. Stolken, and M. D. Feit, Silica molecular dynamic force fields???A practical assessment, Journal of Non-Crystalline Solids, vol.357, issue.6, pp.1564-1573, 2011.
DOI : 10.1016/j.jnoncrysol.2011.01.009

URL : https://digital.library.unt.edu/ark:/67531/metadc871862/m2/1/high_res_d/1119969.pdf

A. Takada, P. Richet, C. Catlow, and G. Price, Molecular dynamics simulations of vitreous silica structures, Journal of Non-Crystalline Solids, vol.345, issue.346, pp.345-346, 2004.
DOI : 10.1016/j.jnoncrysol.2004.08.247

A. Carré, S. Ispas, J. Horbach, and W. Kob, Developing empirical potentials from ab initio simulations: The case of amorphous silica, Computational Materials Science, vol.124, pp.323-334, 2016.
DOI : 10.1016/j.commatsci.2016.07.041

J. Horbach, Molecular dynamics computer simulation of amorphous silica under high pressure, Journal of Physics: Condensed Matter, vol.20, issue.24, 2008.
DOI : 10.1088/0953-8984/20/24/244118

URL : http://arxiv.org/pdf/0804.2660

P. P. Ewald, Die Berechnung optischer und elektrostatischer Gitterpotentiale, Annalen der Physik, vol.54, issue.3, pp.253-287, 1921.
DOI : 10.1002/andp.19213690304

D. Wolf, P. Keblinski, S. R. Phillpot, and J. Eggebrecht, Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r???1 summation, The Journal of Chemical Physics, vol.152, issue.17
DOI : 10.1016/0013-4686(96)00046-1

A. Carré, L. Berthier, J. Horbach, S. Ispas, and W. Kob, Amorphous silica modeled with truncated and screened Coulomb interactions: A molecular dynamics simulation study, The Journal of Chemical Physics, vol.1, issue.11, p.114512, 2007.
DOI : 10.1017/CBO9780511619885

K. Vollmayr, W. Kob, and K. Binder, Cooling-rate effects in amorphous silica: A computer-simulation study, Physical Review B, vol.60, issue.158, pp.15808-15827, 1996.
DOI : 10.1103/PhysRevLett.60.2295

O. Gedeon, Molecular dynamics of vitreous silica ??? Variations in potentials and simulation regimes, Journal of Non-Crystalline Solids, vol.426, pp.103-109, 2015.
DOI : 10.1016/j.jnoncrysol.2015.07.006

G. S. Grest and K. Kremer, Molecular dynamics simulation for polymers in the presence of a heat bath, Physical Review A, vol.76, issue.5, pp.3628-3631, 1986.
DOI : 10.1063/1.443476

S. Melchionna, G. Ciccotti, and B. L. Holian, dynamics for systems varying in shape and size, Molecular Physics, vol.78, issue.3, pp.533-544, 1993.
DOI : 10.1063/1.444728

X. Bidault, S. Chaussedent, W. Blanc, and D. R. Neuville, Deformation of silica glass studied by molecular dynamics: Structural origin of the anisotropy and non-Newtonian behavior, Journal of Non-Crystalline Solids, vol.433, pp.38-44, 2016.
DOI : 10.1016/j.jnoncrysol.2015.11.029

URL : https://hal.archives-ouvertes.fr/hal-01351452

M. J. Davis, Laser-Shock-Induced Spall and the Intrinsic Strength of Glass, International Journal of Applied Glass Science, vol.49, issue.C3, pp.364-373, 2016.
DOI : 10.1029/GL006i002p00073

J. Wang, R. L. Weaver, and N. R. Sottos, Laser-induced decompression shock development in fused silica, Journal of Applied Physics, vol.125, issue.12, pp.9529-9536, 2003.
DOI : 10.1063/1.1658439

S. Luo, L. Han, Y. Xie, Q. An, L. Zheng et al., The relation between shock-state particle velocity and free surface velocity: A molecular dynamics study on single crystal Cu and silica glass, Journal of Applied Physics, vol.12, issue.9, p.93530, 2008.
DOI : 10.1007/978-1-4757-4282-4

H. Sugiura, K. Kondo, and A. Sawaoka, Dynamic response of fused quartz in the permanent densification region, Journal of Applied Physics, vol.77, issue.5, pp.3375-3382, 1981.
DOI : 10.1029/JB084iB12p06723

E. Chagarov, J. B. Adams, and J. Kieffer, structure, Modelling and Simulation in Materials Science and Engineering, vol.12, issue.2, p.337, 2004.
DOI : 10.1088/0965-0393/12/2/013

J. L. Yarger, Structural and Topological Changes in Silica Glass at Pressure, Phys. Rev. B, pp.81-054105, 2010.

D. S. Franzblau, Computation of ring statistics for network models of solids, Physical Review B, vol.54, issue.36, pp.4925-4930, 1991.
DOI : 10.1103/PhysRevLett.54.1392