F. Ferrara and C. Schiffer, Acute myeloid leukaemia in adults, The Lancet, vol.381, issue.9865, pp.484-495, 2013.
DOI : 10.1016/S0140-6736(12)61727-9

J. Dick, Stem cell concepts renew cancer research, Blood, vol.112, issue.13, pp.4793-4807, 2008.
DOI : 10.1182/blood-2008-08-077941

URL : http://www.bloodjournal.org/content/bloodjournal/112/13/4793.full.pdf

S. Garrido, C. Fr-appelbaum, D. Willman, and . Banker, Acute myeloid leukemia cells are protected from spontaneous and drug-induced apoptosis by direct contact with a human bone marrow stromal cell line (HS-5), Experimental Hematology, vol.29, issue.4, pp.448-457, 2001.
DOI : 10.1016/S0301-472X(01)00612-9

M. Konopleva, . Konoplev, . Hu, . Zaritskey, M. Afanasiev et al., Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins, Leukemia, vol.16, issue.9, pp.1713-1724, 2002.
DOI : 10.1038/sj.leu.2402608

R. Costello, . Mallet, . Gaugler, C. Sainty, J. Arnoulet et al., Human acute myeloid leukemia CD34+/CD38-progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities, Cancer Res, vol.60, pp.4403-4411, 2000.

J. Dennis and P. Charbord, Origin and Differentiation of Human and Murine Stroma, Stem Cells, vol.279, issue.3, pp.205-214, 2002.
DOI : 10.1161/01.RES.85.2.182

A. Caplan, Mesenchymal stem cells, Journal of Orthopaedic Research, vol.86, issue.5, pp.641-650, 1991.
DOI : 10.1007/978-1-4612-4594-0_1

D. Prockop, Marrow Stromal Cells as Stem Cells for Nonhematopoietic Tissues, Science, vol.276, issue.5309, pp.71-74, 1997.
DOI : 10.1126/science.276.5309.71

Z. Zhao, Y. Liang, W. Li, . Li, Z. Li et al., Phenotypic and Functional Comparison of Mesenchymal Stem Cells Derived from the Bone Marrow of Normal Adults and Patients with Hematologic Malignant Diseases, Stem Cells and Development, vol.16, issue.4, pp.637-648, 2007.
DOI : 10.1089/scd.2007.0008

D. Campioni, . Lanza, . Moretti, . Dominici, . Punturieri et al., Functional and immunophenotypic characteristics of isolated CD105+ and fibroblast+ stromal cells from AML: implications for their plasticity along endothelial lineage, Cytotherapy, vol.5, issue.1, pp.66-79, 2003.
DOI : 10.1080/14653240310000092

H. Mayani, Composition and function of the hemopoietic microenvironment in human myeloid leukemia, Leukemia, vol.10, pp.1041-1047, 1996.

S. Geyh, M. Rodríguez-paredes, P. Jäger, C. Khandanpour, R. Cadeddu et al., Functional inhibition of mesenchymal stromal cells in acute myeloid leukemia, Leukemia, vol.9, issue.3, pp.683-691, 2016.
DOI : 10.1073/pnas.1301891110

J. Kim, . Shim, . Lee, . Yim, . Kim et al., Microenvironmental Remodeling as a Parameter and Prognostic Factor of Heterogeneous Leukemogenesis in Acute Myelogenous Leukemia, Cancer Research, vol.75, issue.11, pp.2222-2231, 2015.
DOI : 10.1158/0008-5472.CAN-14-3379

P. Chandran, . Le, . Li, . Sabloff, M. Mehic et al., Mesenchymal stromal cells from patients with acute myeloid leukemia have altered capacity to expand differentiated hematopoietic progenitors, Leukemia Research, vol.39, issue.4, pp.486-493, 2015.
DOI : 10.1016/j.leukres.2015.01.013

Z. Zhao, . Xu, . Yu, . Fang, . Wu et al., Functional characteristics of mesenchymal stem cells derived from bone marrow of patients with myelodysplastic syndromes, Cancer Letters, vol.317, issue.2, pp.136-143, 2012.
DOI : 10.1016/j.canlet.2011.08.030

S. Geyh, . Oz, . Cadeddu, . Fröbel, . Brückner et al., Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells, Leukemia, vol.976, issue.9, pp.1841-1851, 2013.
DOI : 10.1182/blood-2008-02-139824

S. Jootar, . Pornprasertsud, . Petvises, . Rerkamnuaychoke, . Disthabanchong et al., Bone marrow derived mesenchymal stem cells from chronic myeloid leukemia t(9;22) patients are devoid of Philadelphia chromosome and support cord blood stem cell expansion, Leukemia Research, vol.30, issue.12, pp.1493-1498, 2006.
DOI : 10.1016/j.leukres.2006.04.013

P. Estrada-gonzález, L. Gómez-ceja, J. Montesinos, . Mayani, L. Chávez-gonzález et al., Decreased frequency, but normal functional integrity of mesenchymal stromal cells derived from untreated and Imatinib-treated chronic myeloid leukemia patients, Leukemia Research, vol.38, issue.5, pp.594-600, 2014.
DOI : 10.1016/j.leukres.2014.02.011

A. Colmone, A. Amorim, . Pontier, E. Wang, D. Jablonski et al., Leukemic Cells Create Bone Marrow Niches That Disrupt the Behavior of Normal Hematopoietic Progenitor Cells, Science, vol.28, issue.2, pp.1861-1865, 2008.
DOI : 10.1016/S0145-2126(03)00184-X

M. Hanoun, . Zhang, . Mizoguchi, . Pinho, . Pierce et al., Acute Myelogenous Leukemia-Induced Sympathetic Neuropathy Promotes Malignancy in an Altered Hematopoietic Stem Cell Niche, Cell Stem Cell, vol.15, issue.3, pp.1-11, 2014.
DOI : 10.1016/j.stem.2014.06.020

URL : http://doi.org/10.1016/j.stem.2014.06.020

B. Hertenstein, L. Hambach, and A. Bacigalupo, Development of leukemia in donor cells after allogeneic stem cell transplantation?a survey of the European Group for Blood and Marrow Transplantation (EBMT), Haematologica, vol.90, pp.969-975, 2005.

O. Sala-torra, . Hanna, . Mr-loken, . Flowers, P. Maris et al., Evidence of Donor-Derived Hematologic Malignancies after Hematopoietic Stem Cell Transplantation, Biology of Blood and Marrow Transplantation, vol.12, issue.5, pp.511-517, 2006.
DOI : 10.1016/j.bbmt.2006.01.006

URL : http://doi.org/10.1016/j.bbmt.2006.01.006

C. Walkley, N. Shea, L. Sims, S. Purton, and . Orkin, Rb Regulates Interactions between Hematopoietic Stem Cells and Their Bone??Marrow Microenvironment, Cell, vol.129, issue.6, pp.1081-1095, 2007.
DOI : 10.1016/j.cell.2007.03.055

URL : http://doi.org/10.1016/j.cell.2007.03.055

C. Walkley, . Gh-olsen, . Dworkin, . Sa-fabb, . Swann et al., A Microenvironment-Induced Myeloproliferative Syndrome Caused by Retinoic Acid Receptor ?? Deficiency, Cell, vol.129, issue.6, pp.1097-1110, 2007.
DOI : 10.1016/j.cell.2007.05.014

URL : https://hal.archives-ouvertes.fr/hal-00166246

M. Raaijmakers, . Mukherjee, . Guo, . Zhang, J. Kobayashi et al., Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia, Nature, vol.102, issue.7290, pp.852-857, 2010.
DOI : 10.1038/nature08851

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422863

O. Herault, . Colombat, . Domenech, . Degenne, . Jl-bremond et al., A rapid single-laser flow cytometric method for discrimination of early apoptotic cells in a heterogenous cell population, British Journal of Haematology, vol.5, issue.3, pp.530-537, 1999.
DOI : 10.1038/343076a0

B. Humar, H. Müller, and R. Scott, Cell cycle dependent DNA break increase in ataxia telangiectasia lymphoblasts after radiation exposure, Molecular Pathology, vol.54, issue.5, pp.347-350, 2001.
DOI : 10.1136/mp.54.5.347

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1187093/pdf

M. Dominici, L. Blanc, I. Mueller, F. Slaper-cortenbach, . Marini et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy, vol.8, issue.4, pp.315-317, 2006.
DOI : 10.1080/14653240600855905

A. Conforti, D. Biagini, . Bufalo, . Sirleto, . Angioni et al., Biological, Functional and Genetic Characterization of Bone Marrow-Derived Mesenchymal Stromal Cells from Pediatric Patients Affected by Acute Lymphoblastic Leukemia, PLoS ONE, vol.96, issue.11, p.76989, 2013.
DOI : 10.1371/journal.pone.0076989.t002

V. López, A. ´. Mn-vázquez-garcía, . Gj-melen, . Martínez, J. Moreno et al., Mesenchymal Stromal Cells Derived from the Bone Marrow of Acute Lymphoblastic Leukemia Patients Show Altered BMP4 Production: Correlations with the Course of Disease, PLoS ONE, vol.460, issue.1, p.84496, 2014.
DOI : 10.1371/journal.pone.0084496.t001

C. Pontikoglou, . Mc-kastrinaki, . Klaus, . Kalpadakis, . Katonis et al., Study of the Quantitative, Functional, Cytogenetic, and Immunoregulatory Properties of Bone Marrow Mesenchymal Stem Cells in Patients with B-Cell Chronic Lymphocytic Leukemia, Stem Cells and Development, vol.22, issue.9, pp.1329-1341, 2013.
DOI : 10.1089/scd.2012.0255

A. Janel, C. Dubois-galopin, . Bourgne, . Berger, N. Tarte et al., The Chronic Lymphocytic Leukemia Clone Disrupts the Bone Marrow Microenvironment, Stem Cells and Development, vol.23, issue.24, pp.2972-2982, 2014.
DOI : 10.1089/scd.2014.0229

URL : https://hal.archives-ouvertes.fr/hal-01058950

C. Aanei, . Flandrin, . Fz-eloae, . Carasevici, E. Guyotat et al., Intrinsic Growth Deficiencies of Mesenchymal Stromal Cells in Myelodysplastic Syndromes, Stem Cells and Development, vol.21, issue.10, pp.1604-1615, 2012.
DOI : 10.1089/scd.2011.0390

M. Aoyagi, . Furusawa, S. Waga, H. Tsunogake, and . Shishido, Suppression of Normal Hematopoiesis in Acute Leukemia: Effect of Leukemic Cells on Bone Marrow Stromal Cells and Hematopoietic Progenitor Cells., Internal Medicine, vol.33, issue.5, pp.288-295, 1994.
DOI : 10.2169/internalmedicine.33.288

B. Frisch, . Ashton, . Xing, C. Becker, L. Jordan et al., Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia, Blood, vol.119, issue.2, pp.540-550, 2012.
DOI : 10.1182/blood-2011-04-348151

M. Bowers, Y. Zhang, . Ho, C. Agarwal, R. Chen et al., Osteoblast ablation reduces normal long-term hematopoietic stem cell self-renewal but accelerates leukemia development, Blood, vol.125, issue.17, pp.2678-2688, 2015.
DOI : 10.1182/blood-2014-06-582924

URL : http://www.bloodjournal.org/content/bloodjournal/125/17/2678.full.pdf

M. Dvo?áková, . Karafiát, . Pajer, . Kluzáková, . Jarkovská et al., DNA released by leukemic cells contributes to the disruption of the bone marrow microenvironment, Oncogene, vol.13, issue.44, pp.5201-5209, 2013.
DOI : 10.2144/000113002

J. Ho, . Chen, . Ma, M. Tseng, O. Chen et al., Cell Contact Accelerates Replicative Senescence of Human Mesenchymal Stem Cells Independent of Telomere Shortening and p53 Activation: Roles of Ras and Oxidative Stress, Cell Transplantation, vol.20, issue.8, pp.1209-1220, 2011.
DOI : 10.3727/096368910X546562

C. Tripodo, D. Bernardo, C. Ternullo, . Guarnotta, . Porcasi et al., CD146+ bone marrow osteoprogenitors increase in the advanced stages of primary myelofibrosis, Haematologica, vol.94, issue.1, pp.127-130, 2009.
DOI : 10.3324/haematol.13598

P. Basak, . Chatterjee, . Das, J. Das, . Pereira et al., Leukemic stromal hematopoietic microenvironment negatively regulates the normal hematopoiesis in mouse model of leukemia, Chinese Journal of Cancer, vol.29, issue.12, pp.969-979, 2010.
DOI : 10.5732/cjc.010.10431

B. Sacchetti, . Funari, . Michienzi, . Di-cesare, . Piersanti et al., Self-Renewing Osteoprogenitors in Bone Marrow Sinusoids Can Organize a Hematopoietic Microenvironment, Cell, vol.131, issue.2, pp.324-336, 2007.
DOI : 10.1016/j.cell.2007.08.025

URL : http://doi.org/10.1016/j.cell.2008.05.015

A. Tormin, J. Li, . Brune, . Walsh, . Schutz et al., CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization, Blood, vol.117, issue.19, pp.5067-5077, 2011.
DOI : 10.1182/blood-2010-08-304287

S. Kale, Microarray analysis of in vitro pericyte differentiation reveals an angiogenic program of gene expression, The FASEB Journal, vol.19, pp.270-271, 2004.
DOI : 10.1096/fj.04-1604fje

C. Fei, Y. Zhao, . Gu, . Guo, X. Zhang et al., Impaired osteogenic differentiation of mesenchymal stem cells derived from bone marrow of patients with lower-risk myelodysplastic syndromes, Tumor Biology, vol.97, issue.5, pp.4307-4316, 2014.
DOI : 10.1182/blood.V97.5.1427

M. Maijenburg, . Kleijer, . Vermeul, . Mul, C. Van-alphen et al., The composition of the mesenchymal stromal cell compartment in human bone marrow changes during development and aging, Haematologica, vol.97, issue.2, pp.179-183, 2012.
DOI : 10.3324/haematol.2011.047753

M. Reedijk, . Odorcic, . Chang, . Zhang, . Miller et al., High-level Coexpression of JAG1 and NOTCH1 Is Observed in Human Breast Cancer and Is Associated with Poor Overall Survival, Cancer Research, vol.65, issue.18, pp.8530-8537, 2005.
DOI : 10.1158/0008-5472.CAN-05-1069

A. Kode, . Js-manavalan, . Mosialou, . Bhagat, . Cv-rathinam et al., Leukaemogenesis induced by an activating ??-catenin mutation in osteoblasts, Nature, vol.49, issue.7487, pp.240-244, 2014.
DOI : 10.1016/j.bone.2011.07.017

T. Kamga, P. Bassi, . Cassaro, D. Midolo, . Trapani et al., Notch signalling drives bone marrow stromal cell-mediated chemoresistance in acute myeloid leukemia, Oncotarget, vol.7, issue.16, pp.21713-21727, 2016.
DOI : 10.18632/oncotarget.7964

URL : http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=download&path%5B%5D=7964&path%5B%5D=23369

C. Santamaria, . Muntion, . Roson, O. Blanco, S. Lopez-villar et al., Impaired expression of DICER, DROSHA, SBDS and some microRNAs in mesenchymal stromal cells from myelodysplastic syndrome patients, Haematologica, vol.97, issue.8, pp.1218-1224, 2012.
DOI : 10.3324/haematol.2011.054437

Y. Zhao, C. Wu, . Fei, . Guo, Y. Gu et al., Down-regulation of Dicer1 promotes cellular senescence and decreases the differentiation and stem cell-supporting capacities of mesenchymal stromal cells in patients with myelodysplastic syndrome, Haematologica, vol.100, issue.2, pp.194-204, 2014.
DOI : 10.3324/haematol.2014.109769

J. Lee, . Yu, . Kim, . Kang, . Kim et al., BMI1 inhibits senescence and enhances the immunomodulatory properties of human mesenchymal stem cells via the direct suppression of MKP-1/DUSP1, Aging, vol.8, issue.8, pp.1670-1689, 2016.
DOI : 10.18632/aging.101000

R. Sparrow, E. O. Flaherty, J. Tm-blanksby, M. Szer, and . Van-der-weyden, Perturbation in the ability of bone marrow stroma from patients with acute myeloid, 1997.