Direct C3-arylation of 2H-indazole derivatives with aryl bromides using a low loading of a phosphine-free palladium-catalyst

Fatma Belkessam, ${ }^{[a, b]}$ Mohand Aidene, ${ }^{[a, b]}$ Jean-François Soulé*[b] and Henri Doucet ${ }^{*[b]}$

Abstract

The palladium-catalysed direct arylation of 2 H -indazoles with aryl bromides for the preparation of 3 -aryl-2H-indazoles was found to proceed in high yields using only $0.5-0.1 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst and KOAc as inexpensive base. A wide variety of electrondeficient and electron-rich aryl bromides and also heteroaryl bromides has been successfully employed. Both electronwithdrawing and electron-donating substituents on the 2 H -indazoles are also tolerated. Moreover, the reaction can be performed in "green" solvent cyclopentyl methyl ether.

Introduction

Indazole derivatives exhibit important biological properties. ${ }^{[1]}$ For example, Losoxantrone is an anticancer drug that belongs to the family of drugs called antipyrazoles; whereas, A exhibits anti-inflammatory properties (Figure 1).. ${ }^{[2]}$ Moreover, some arylated pyrazolopyrimidines also display important properties, such as lbrutinib which is an anticancer drug. Therefore, the discovery of simple procedures allowing the easy access to C3arylated indazole derivatives is an important research area in organic chemistry.

Figure 1 Examples of bioactive indazole derivatives
Nakamura, Tajima and Sakai reported in 1982, that isoxazoles could be arylated at position C4 of with aryl halides, via a C-H bond activation, using palladium catalysts. ${ }^{[3]}$ Since these results, the Pd-catalysed direct arylation ${ }^{[4]}$ of heteroarene derivatives, including pyrazoles, with aryl (pseudo)halides has been demonstrated to be one of the most powerful method for the synthesis of arylated heteroarenes. ${ }^{[4-8]}$ For such reactions, the major by-products are a base associated to HX, instead of the metallic salts produced with other cross-coupling reactions. Since 2009, the C4- and C5-arylation of pyrazoles has been studied in details. ${ }^{[4 r, 6]}$ On the contrary, only a few examples of Pd-catalysed direct couplings of aryl halides with 2 H -indazoles have been reported so far. ${ }^{[9]}$ In 2010, Greaney et al. reported that 2 -phenyl-2H-indazole could be arylated at C3-position in high yields using aryl bromides as coupling partners. For this reaction, a quite high catalyst loading was employed: $5 \mathrm{~mol} \%$

[^0]PdCl_{2} (dppf) associated to $10 \mathrm{~mol} \% \mathrm{PPh}_{3}$ (Scheme 1, top). ${ }^{[9 \mathrm{~b}]}$ Moreover, 1 equiv. of the expensive base $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ was used. Yamaguchi and Itami reported in 2012 that the C3 arylation of 2 H -indazoles could also be performed with a copper catalyst. However, this method is limited to the use of aryl iodides as aryl source, as with bromobenzene a very low yield of 4% was obtained (Scheme 1, middle). ${ }^{[10]}$ 3-Arylindazoles can also be prepared in two steps by 1) reaction of indazoles with a boron derivative $\left(\mathrm{B}_{2} \mathrm{pin}_{2}\right)$ in the presence of an iridium catalyst, 2) followed by C3-arylation via Suzuki coupling using an aryl bromide (Scheme 1, middle). ${ }^{[11]}$ Very recently, Basu, Poirier et al. reported an access to a variety of 3 -arylated 2 H -indazoles via the formation of an indazolyl-zinc chloride intermediate prepared from indazole derivatives, followed by Negishi coupling using 5 mol\% of a palladium complex containing XPhos ligand (Scheme 1, bottom). ${ }^{[12]}$ Some 3-arylindazoles can also be prepared by intramolecular cyclization reactions. ${ }^{[13]}$ However, the access to 3-aryl-2H-indazoles remains limited due to the relatively narrow scope of the actual synthetic methods.

Scheme 1 Reported metal-catalysed direct functionalisations and Negishi couplings of 2 H -indazole derivatives with aryl bromides.

Therefore, the discovery of economically viable reaction conditions promoting the direct arylation at C3-position of $2 \mathrm{H}-$ indazoles with a wide variety of (hetero)aryl bromides, using a low loading of an easily available palladium catalyst, remains an important challenge.

Here, we report on the reactivity 2-benzyl-2H-indazole derivatives in the Pd-catalysed direct arylation reaction with a variety of aryl bromides using low loading of a phosphine-free palladium catalyst in the presence of an inexpensive base (Scheme 2).

Scheme 2 Palladium-catalysed direct arylation of 2 H -indazoles

Results and Discussion

We initially studied the C3-arylation of 2-benzyl-2H-indazole using 4-bromobenzonitrile as coupling partner in the presence of palladium catalysts (Table 1). The use of $2 \mathrm{~mol} \%$ $\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})$ catalyst and KOAc as base at $150^{\circ} \mathrm{C}$ led to the desired coupling product 1 in 85% yields, with a complete conversion of 4 -bromobenzonitrile, but with the formation in low yield of [$1,1^{\prime}$-biphenyl]-4, 4^{\prime}-dicarbonitrile arising from the homocoupling of 4 -bromobenzonitrile (Table 1, entry 1). In 2003, de Vries et al. reported that, when $\mathrm{Pd}(\mathrm{OAc})_{2}$ is employed as the catalyst precursor without phosphine ligand, at elevated temperature, soluble palladium(0) colloids or nanoparticles are formed, which are very efficient catalysts in the Suzuki or Heck reactions. ${ }^{[14]}$ We have recently reported that the coupling of aryl bromides with several heteroaromatics proceed nicely under the de Vries conditions. ${ }^{[15]}$ Such phosphine-free conditions were found to be also very effective for the C 3 -arylation of 2 H indazoles. The use of $1 \mathrm{~mol} \%, 0.5 \mathrm{~mol} \%$ or even $0.1 \mathrm{~mol} \%$ $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst at $150^{\circ} \mathrm{C}$ was found to promote efficiently the coupling of 2 -benzyl-2H-indazole and 4 -bromobenzonitrile, affording the target product 1 in very high yields of $88 \%-93 \%$ (Table 1, entries 2-4). The use of $0.5 \mathrm{~mol} \% \mathrm{PdCl}_{2}$ catalyst without phosphine ligand was also very effective, as $\mathbf{1}$ was isolated in 92% yield (Table 1, entry 5). Then, the influence of some bases using these phosphine-free conditions was examined. Sodium acetate and potassium carbonate, in the presence of $0.5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, afforded 1 in 72% and 85% yields, respectively (Table 1, entries 6 and 7); whereas, cesium carbonate was completely ineffective for this reaction (Table 1, entry 8). The influence of the solvent was also examined. The reaction performed in DMF, NMP or xylene gave 1 in lower yields than in DMA, due again to the formation of [1,1 '-biphenyl]-$4,4^{\prime}$-dicarbonitrile as side-product (Table 1, entries 9-11). On the contrary, cyclopentyl methyl ether (CPME) was found to be very effective for the C 3 -arylation of 2 -benzyl-2H-indazole with 4 -
bromobenzonitrile, as 1 was obtained in 87% yield (Table 1, entry 12). It should be mentioned that CPME is a suitable alternative solvent to DMA, ${ }^{[16]}$ due to its high hydrophobicity, low formation of peroxides (compared with THF or diisopropyl ether), relative stability under acidic and basic conditions and a narrow explosion range. CPME can be manufactured by the addition of MeOH to cyclopentene, which produces no apparent waste. ${ }^{[17]}$ The reaction performed in DMA at $120^{\circ} \mathrm{C}$ instead of $150^{\circ} \mathrm{C}$ using $0.5 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst afforded $\mathbf{1}$ in 80% yield (Table 1, entry 13).

Table 1. C3-arylation of 2-benzyl-2H-indazole with 4bromobenzonitrile: influence of the reaction conditions

Entry	Solvent	Base	Catalyst (mol\%)	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Conv. (\%)	Yield in 1 (\%)
1	DMA	KOAc	$\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})$ (2)	150	100	$85^{\text {a }}$
2	DMA	KOAc	$\mathrm{Pd}(\mathrm{OAc})_{2}(1)$	150	100	$88^{\text {a }}$
3	DMA	KOAc	$\mathrm{Pd}(\mathrm{OAc})_{2}(0.5)$	150	100	93
4	DMA	KOAc	$\mathrm{Pd}(\mathrm{OAc})_{2}(0.1)$	150	100	93
5	DMA	KOAc	$\mathrm{PdCl}_{2}(0.5)$	150	100	92
6	DMA	NaOAc	$\mathrm{Pd}(\mathrm{OAc})_{2}(0.5)$	150	100	$72^{\text {a }}$
7	DMA	$\mathrm{K}_{2} \mathrm{CO}_{3}$	$\mathrm{Pd}(\mathrm{OAc})_{2}(0.5)$	150	100	85
8	DMA	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	$\mathrm{Pd}(\mathrm{OAc})_{2}(0.5)$	150	15	<2
9	DMF	KOAc	$\mathrm{Pd}(\mathrm{OAc})_{2}(0.5)$	150	100	$76^{\text {a }}$
10	NMP	KOAc	$\mathrm{Pd}(\mathrm{OAc})_{2}(0.5)$	150	100	$74^{\text {a }}$
11	xylene	KOAc	$\mathrm{Pd}(\mathrm{OAc})_{2}(0.5)$	140	100	$71^{\text {a }}$
12	CPME	KOAc	$\mathrm{Pd}(\mathrm{OAc})_{2}(0.5)$	110	100	87
13	DMA	KOAc	$\mathrm{Pd}(\mathrm{OAc})_{2}(0.5)$	120	97	80

Conditions: 2-benzyl-2H-indazole (1.3 equiv.), 4-bromobenzonitrile (1 equiv.), base (2 equiv.), 20 h , conversions of 4 -bromobenzonitrile determined by GC and NMR, isolated yields. ${ }^{\text {a }}$ traces of [1,1'-biphenyl]-4,4'-dicarbonitrile were also observed.

Then, we examined the scope of the C 3 -arylation reaction of 2 H indazoles using various aryl bromides in the presence of 0.5 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ as the catalyst, KOAc as the base in DMA at $150^{\circ} \mathrm{C}$ (Scheme 3). First, the coupling of 2-benzyl-2H-indazole with para-substituted aryl bromides was studied. Reactions with 4-bromobenzaldehyde, 4-bromoacetophenone, 4bromopropiophenone, 4-bromobenzophenone or methyl 4bromobenzoate afforded 2-6 in 79-93\% yields.

87\%*

*: $\mathrm{Pd}(\mathrm{OAc})_{2} 0.1 \mathrm{~mol} \%$
**: CMPE as solvent at $110^{\circ} \mathrm{C}$

Scheme 3 Direct arylations of 2-benzyl-2H-indazole with a set of (hetero)ary bromides.

High yields in the desired 3-arylindazoles 7-10 were also obtained with bromobenzenes bearing at para-position trifluoromethyl-, nitro-, chloro- or fluoro-substituents, in the presence of $0.5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$. Under these conditions, even the electron-rich 4-bromotoluene and 4-bromoanisole afforded the C3-arylated indazoles 12 and 13 in high yields; whereas, strongly electron-rich $4-N, N$-dimethylaniline gave 14 in <10\% yield, due to a poor conversion of this aryl bromide.

The meta-substituted electron-deficient aryl bromides, 3bromobenzonitrile and 3,5-bis(trifluoromethyl)bromobenzene were also found to be suitable reactants, affording 15 and 16 in 91% and 90% yields, respectively (Scheme 3). Then, a set of ortho-substituted aryl bromides was reacted with 2-benzyl-2Hindazole using again $0.5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst. 2-Nitrile-, 2-(trifluoromethyl)-, 2-fluoro- and 2-chloro-substituents were tolerated, affording the desired products 18-21 in 73-91\% yields. N -containing heteroaryl bromides are also suitable reactants. With 3-bromopyridine, 3-bromoquinoline or 5-bromopyrimidine, under the same reaction conditions, the desired products 23-25 were obtained in 83-93\% yields.

For several aryl bromides, the reaction yields using a lower catalyst loading of $0.1 \mathrm{~mol} \%$ was determined (Scheme 3). With aryl bromides containing formyl, acetyl, benzoyl, nitro, trifluoromethyl, fluoro or methyl substituents, similar yields in 2, 3 $5,8,10,12$ and 16 than with $0.5 \mathrm{~mol} \%$ catalyst were obtained; whereas, with electron-rich 4-bromoanisole, 13 was produced in a lower yield due to a partial conversion of this aryl bromide. A few reactions using CPME instead of DMA as solvent were also performed. Aryl bromides bearing 4-formyl-, 4-acetyl-, or 4-methyl-substituents with $0.5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ at $110^{\circ} \mathrm{C}$ in CPME gave 2, 3 and 12 in $79-84 \%$ yields.

Then, we investigated the influence of the nitrogen substituents on 2 H -indazoles (Scheme 4). The reactivity of 2 -nhexyl-2Hindazole was similar to 2-benzyl-2H-indazole, as its reaction with 4-bromopropiophenone, bromobenzene and 5-bromopyrimidine gave 26-28 in 78-93\% yields. The reaction of 2 -isobutyl-2Hindazole with 4-bromobenzonitrile and 4-bromonitrobenzene also gave the expected products 29 and 30 in similar yields. Even the more congested 2-isopropyl-2H-indazole reacted nicely under these low catalyst loading conditions, affording 3133 in $86-93 \%$ yields.

33 93\%
Scheme 4 Direct arylations of 2-alkyl-2H-indazoles with a set of aryl bromides.

The influence of some synthetically useful functional groups on the indazolyl moiety on the coupling was then investigated (Scheme 5). No significant influence of a nitro substituent at C6 position on indazole was observed, as the reaction of 2-benzyl6 -nitro- 2 H -indazole and 4 -bromobenzonitrile gave 34 in 70% yield. The reaction of a 4 -bromo- 2 H -indazole derivative with 4 bromobenzonitrile or 4 -bromonitrobenzene at $140^{\circ} \mathrm{C}$ during 8 h also proceeded nicely, without cleavage of the indazolyl $\mathrm{C}-\mathrm{Br}$ bond, affording 35 and 36 in 63% and 64% yields, respectively. Under these reaction conditions, the oxidative addition of the aryl bromides to palladium is faster than the oxidative addition of the 4 -bromoindazole moiety. We also examined the reactivity of an indazole bearing an acetamide substituent at C5-position. Arylation of this substrate would give an access to derivatives of Losoxantrone which is an anticancer drug (Fig. 1). Under the same reaction conditions, using 4-bromobenzonitrile as aryl source, target product 37 was obtained in 75% yield.

Scheme 5 Direct arylations of substituted 2-benzyl-2H-indazoles with aryl bromides.

N -protected 2 H -indazoles can be prepared by several routes such as the reaction of a 2-nitrobenzaldehyde with an amine. ${ }^{[18 \mathrm{~b}]}$ They can also be obtained by reaction of indazoles with alkyl halides. ${ }^{[18 a]}$ However, this synthetic route sometimes affords mixtures of 1-benzyl-1H-indazoles and 2-benzyl-2H-indazoles. For example, the reaction of 5 -nitroindazole with benzyl bromide in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF at $70^{\circ} \mathrm{C}$ gave a mixture of 2-benzyl-5-nitro-2H-indazole and 1-benzyl-5-nitro-1H-indazole (ratio 1:1) which cannot be easily separated by column chromatography. We assumed that 2-benzyl-5-nitro-2Hindazole would be more reactive than 1-benzyl-5-nitro-1Hindazole in such direct arylations; therefore, we could expect to obtain selectively the C3-arylated 2 -benzyl-5-nitro-2H-indazoles from a mixture of these two indazole derivatives. Indeed, from an equimolar mixture of these two indazoles and 4bromobenzonitrile as coupling partner, the selective formation of 38 in 88% yield was observed; whereas, 1 -benzyl-5-nitro-1Hindazole was recovered unreacted (Scheme 6, top). Similar results were obtained for the reaction of a mixture of these two indazoles with 3,5 -bis(trifluoromethyl)bromobenzene or 3bromoquinoline, affording the 3 -arylated- 2 H -indazoles 39 and 40 in 79% and 77% yields, respectively. An equimolar mixture of 2 -benzyl-6-nitro-2 H -indazole and 1-benzyl-6-nitro-1 H -indazole in the presence of 3 -bromoquinoline also gave selectively the C3arylated 2 H -indazole 41 in good yield (Scheme 6, bottom).

38 88\%

4077%

39 79\%

Scheme 6 Direct arylations using an equimolar mixture of nitro-substituted 2-benzyl-indazoles with a set of aryl bromides.

It should be mentioned that, despite 1 H -indazoles are much less reactive than 2 H -indazoles in Pd-catalysed direct arylation; however, moderate yield in 3 -aryl-1H-indazoles could be obtained using $2 \mathrm{~mol} \% \mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})$ catalyst and KOAc as base in DMA at $150^{\circ} \mathrm{C}$. Under these conditions, 1 -benzyl-1Hindazoles were successfully coupled with 4 -bromobenzonitrile and 4-(trifluoromethyl)bromobenzene affording 42-44 in 34-38\% yields. Product 42 was obtained in only 15% yield in the presence of $0.5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst.

Scheme 7 Direct arylations of 1-benzyl-1H-indazoles with aryl bromides.

Conclusions

In summary, we demonstrated that a set of 2-benzyl-2Hindazoles reacts nicely in the presence of only $0.5-0.1 \mathrm{~mol} \%$ of phosphine-free $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst and KOAc as inexpensive base to afford the C 3 -arylated 2 H -indazoles in good to very high yields. Several functional groups on the aryl bromide such as nitro, formyl, acetyl, propionyl, benzoyl, ester, nitrile, trifluoromethyl, fluoro, chloro, methyl or methoxy are tolerated. This procedure appears to be very promising for the synthesis of 3 -aryl-2H-indazoles, as the major by-products of these couplings are $\mathrm{AcOH} / \mathrm{KBr}$, as it reduces the number of steps to prepare these compounds, as there is no need to eliminate phosphine derivatives at the end of the reaction, and as it can be performed in CPME as "green" solvent.

Experimental Section

DMA (99\%), was purchased from Acros. $\mathrm{Pd}(\mathrm{OAc})_{2},\left[\mathrm{Pd}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}$, 1.4bis(diphenylphosphino)butane (98\%), KOAc (99\%), Indazole (99\%), 5-nitro-1H-indazole $(98+\%)$, and 4-bromo-1H-indazole ($97+\%$), were purchased from Alfa Aesar. These compounds were not purified before use. 2-Benzyl-2H-indazole and 2-alkylindazoles were prepared according to reported procedures. ${ }^{[18]}$

Preparation of the $\operatorname{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})$ catalyst: ${ }^{[19]}$ An oven-dried 40 mL Schlenk tube equipped with a magnetic stirring bar under argon atmosphere, was charged with $\left[\mathrm{Pd}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}(182 \mathrm{mg}, 0.5 \mathrm{mmol})$ and dppb ($426 \mathrm{mg}, 1 \mathrm{mmol}$). 10 mL of anhydrous dichloromethane was added, then the solution was stirred at room temperature for twenty minutes. The solvent was removed in vacuum. The yellow powder was used without purification. ${ }^{31} \mathrm{P}$ NMR $\left(81 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=19.3$ (s).

Preparation of 2-benzyl-4-bromo-2H-indazole: Benzyl bromide (0.770 $\mathrm{g}, 4.5 \mathrm{mmol}$), 4-bromo- 1 H-indazole ($0.591 \mathrm{~g}, 3 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.242 \mathrm{~g}, 9$ mmol) were dissolved in DMF (5 mL) under an argon atmosphere. The reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 18 h . Then, the solvent was evaporated and the product was purified by silica gel column chromatography. 2-Benzyl-4-bromo-2H-indazole was obtained in 38\% $(0.327 \mathrm{~g})$ yield as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.91$ (s, $1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.13 (dd, $J=8.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=148.8,135.2,128.9,128.4,127.9,126.6,124.2,124.0,123.8,116.7$, 112.8, 57.6.

General procedure for the synthesis of compounds 1-44: In a typical experiment, the aryl bromide derivative (1 mmol), indazole derivative (1.3 $\mathrm{mmol})$, $\mathrm{KOAc}(0.196 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{PdCl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{dppb})(12.2 \mathrm{mg}, 0.02$ $\mathrm{mmol})$ or $\mathrm{Pd}(\mathrm{OAc})_{2}(1.1 \mathrm{mg}, 0.005 \mathrm{mmol})$ or $(0.22 \mathrm{mg}, 0.001 \mathrm{mmol})$ (see table or schemes) were dissolved in DMA (4 mL) under an argon atmosphere. The reaction mixture was stirred at 110,140 or $150^{\circ} \mathrm{C}$ for 8 or 20 h (see tables and schemes). Then, the solvent was evaporated and the product was purified by silica gel column chromatography.

4-(2-Benzyl-2H-indazol-3-yl)benzonitrile (1): From 2-benzyl-2Hindazole ($0.270 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 4-bromobenzonitrile ($0.182 \mathrm{~g}, 1$
mmol), 1 was obtained after purification by flash chromatography on silica gel (pentane-Et2O, 85-15) in $93 \%(0.287 \mathrm{~g})$ yield as a yellow solid (mp: 190-192 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.79$ (d, J $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.53 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 3 \mathrm{H})$, $7.15(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 2 \mathrm{H}), 5.65(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.2,136.2,134.1,133.9,132.6,129.9$, 128.7, 127.9, 126.6, 126.5, 122.9, 121.4, 119.4, 118.1, 117.7, 112.3, 54.7. Elemental analysis: calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{3}$ (309.36): C 81.53, H 4.89; found: C 81.64, H 5.04.

4-(2-Benzyl-2H-indazol-3-yl)benzaldehyde (2): From 2-benzyl2 H -indazole ($0.270 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 4-bromobenzaldehyde (0.185 $\mathrm{g}, 1 \mathrm{mmol}), 2$ was obtained after purification by flash chromatography on silica gel (pentane-Et ${ }_{2} \mathrm{O}, 80-20$) in 85% (0.265 g) yield as an orange solid (mp: 170-172 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=10.07(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.05$ $(\mathrm{m}, 2 \mathrm{H}), 5.68(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=191.2$ $148.2,136.4,135.8,135.4,134.7,130.0,129.9,128.6,127.8$, 126.6, 126.5, 122.6, 121.4, 119.6, 117.6, 54.6. Elemental analysis: calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$ (312.36): C 80.75, H 5.16; found: C 80.46, H 5.02 .

1-(4-(2-Benzyl-2H-indazol-3-yl)phenyl)ethan-1-one (3): From 2 benzyl-2H-indazole ($0.270 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 4-bromoacetophenone ($0.199 \mathrm{~g}, 1 \mathrm{mmol}$), 3 was obtained after purification by flash chromatography on silica gel (pentane-Et $\mathrm{t}_{2} \mathrm{O}, 75-25$) in 88% (0.287 g) yield as a yellow solid (mp: 174-176 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=8.07(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.31-7.22 (m, 3H), 7.12 (t, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 2 \mathrm{H}), 5.67$ (s, 2H), $2.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.2$ $148.3,136.8,136.5,135.0,134.1,129.6,128.8,128.7,127.7$, 126.6, 126.4, 122.5, 121.4, 119.8, 117.6, 54.5, 26.6. Elemental analysis: calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ (326.40): C 80.96, H 5.56; found: C 81.10, H 5.64.

1-(4-(2-Benzyl-2H-indazol-3-yl)phenyl)propan-1-one (4): From 2-benzyl-2H-indazole ($0.270 \mathrm{~g}, 1.3 \mathrm{mmol})$ and 4 bromopropiophenone ($0.213 \mathrm{~g}, 1 \mathrm{mmol}$), 4 was obtained after purification by flash chromatography on silica gel (pentane-Et $\mathrm{t}_{2} \mathrm{O}$, $75-25)$ in $88 \%(0.299 \mathrm{~g})$ yield as a yellow solid (mp: 146-148 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.06(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.36(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.11-7.05(\mathrm{~m}, 2 \mathrm{H}), 5.65(\mathrm{~s}, 2 \mathrm{H}), 3.03(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.9,148.3,136.7$, 136.6, 135.1, 133.9, 129.6, 128.7, 128.5, 127.8, 126.7, 126.5, 122.5, 121.5, 119.9, 117.6, 54.6, 31.9, 8.2. Elemental analysis calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ (340.42): C 81.15, H 5.92; found: C 81.07 , H 5.99.

(4-(2-Benzyl-2H-indazol-3-yl)phenyl)(phenyl)methanone (5)

 From 2-benzyl-2H-indazole ($0.270 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 4bromobenzophenone ($0.261 \mathrm{~g}, 1 \mathrm{mmol}$), 5 was obtained afterpurification by flash chromatography on silica gel (pentane-Et ${ }_{2} \mathrm{O}$ $80-20)$ in $93 \%(0.361 \mathrm{~g})$ yield as a brown oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.92(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.81$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.49$ (t, J = 8.0 Hz, 2H), $7.34(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.13$ (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.08(\mathrm{~m}, 2 \mathrm{H}), 5.67(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=195.4,148.1,137.2,136.9,136.4,134.8,133.3$, $132.4,130.3,129.7,129.1,128.5,128.1,127.5,126.5,126.3$, 122.3, 121.2, 119.7, 117.4, 54.3. Elemental analysis: calcd (\%) for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ (388.47): C 83.48, H 5.19; found: C 83.59, H 5.30 .

Methyl 4-(2-benzyl-2H-indazol-3-yl)benzoate (6): From 2-benzyl2 H -indazole ($0.270 \mathrm{~g}, 1.3 \mathrm{mmol}$) and methyl 4-bromobenzoate ($0.215 \mathrm{~g}, 1 \mathrm{mmol}$), 6 was obtained after purification by flash chromatography on silica gel (pentane-Et $\mathrm{t}_{2} \mathrm{O}, 70-30$) in 79\% (0.270 g) yield as a brown solid (mp: 178-180 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=8.16(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.31-7.22 (m, 3H), 7.13 (t, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.06$ (m, 2H), 5.66 (s, 2H), 3.97 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C} \operatorname{NMR~(~} 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.3$, $148.2,136.4,135.0,134.0,130.1,130.0,129.4,128.6,127.7$ 126.6, 126.3, 122.3, 121.3, 119.7, 117.5, 54.5, 52.1. Elemental analysis: calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ (342.39): C 77.17, H 5.30; found: C 77.37, H 5.17.

2-Benzyl-3-(4-(trifluoromethyl)phenyl)-2H-indazole (7): From 2-benzyl-2H-indazole $(0.270 \mathrm{~g}, \quad 1.3 \mathrm{mmol})$ and 4(trifluoromethyl)bromobenzene ($0.225 \mathrm{~g}, 1 \mathrm{mmol}$), 7 was obtained after purification by flash chromatography on silica gel (pentane$\mathrm{Et}_{2} \mathrm{O}, 95-5$) in $91 \%(0.320 \mathrm{~g})$ yield as a white solid (mp: 190-192 $\left.{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.60-7.53 (m, 3H), $7.37(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-$ $7.22(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 2 \mathrm{H}), 5.66(\mathrm{~s}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.4,136.5,134.6,133.3$, 130.4 (q, $J=33.0 \mathrm{~Hz}$), 129.9, 128.7, 127.8, 126.7, 126.5, 125.9 (q, $J=3.7 \mathrm{~Hz}$), $123.7(\mathrm{q}, ~ J=272.4 \mathrm{~Hz})$, 122.6, 121.5, 119.7, 117.7, 54.6. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-62.8$. Elemental analysis: calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2}$ (352.35): C 71.58, H 4.29; found: C 71.30, H 4.21 .

2-Benzyl-3-(4-nitrophenyl)-2H-indazole (8): From 2-benzyl-2Hindazole ($0.270 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 4-bromonitrobenzene ($0.208 \mathrm{~g}, 1$ mmol), 8 was obtained after purification by flash chromatography on silica gel (pentane-Et $2 \mathrm{O}, 80-20$) in $93 \%(0.306 \mathrm{~g})$ yield as a yellow solid (mp: 218-220 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.35(\mathrm{~d}, \mathrm{~J}$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 3 \mathrm{H})$, $7.18(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 2 \mathrm{H}), 5.69(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.4,147.7,136.3,136.1,133.8,130.3$, 128.9, 128.1, 126.8, 126.6, 124.2, 123.3, 121.7, 119.4, 117.9, 54.9. Elemental analysis: calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$ (329.35): C 72.94, H 4.59; found: C 72.80, H 4.37

2-Benzyl-3-(4-chlorophenyl)-2H-indazole (9): From 2-benzyl-2Hindazole ($0.270 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 4-bromochlorobenzene (0.191 g , 1 mmol), 9 was obtained after purification by flash chromatography on silica gel (pentane-Et $\mathrm{t}_{2} \mathrm{O}, 80-20$) in $81 \%(0.258 \mathrm{~g})$ yield as a
yellow solid (mp: 144-146 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 7.81 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.42-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.17-7.04(\mathrm{~m}, 3 \mathrm{H}), 5.63(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=148.2$, 136.6, 134.9, 130.8, 129.2, 128.6, 128.0, 127.7, 126.7, 126.4, 122.1, 121.3, 119.8, 117.5, 54.3. Elemental analysis: calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClN}_{2}$ (318.80): C 75.35, H 4.74; found: C 75.70, H 5.00 .

2-Benzyl-3-(4-fluorophenyl)-2H-indazole (10): From 2-benzyl2 H -indazole ($0.270 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 4-bromofluorobenzene (0.175 $\mathrm{g}, 1 \mathrm{mmol}$), 10 was obtained in after purification by flash chromatography on silica gel (pentane-Et2O, 90-10) 78\% (0.235 g) yield as a yellow solid (mp: 150-152 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.80(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-$ $7.23(\mathrm{~m}, 6 \mathrm{H}), 7.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.06(\mathrm{~m}, 3 \mathrm{H}), 5.63(\mathrm{~s}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.9(\mathrm{~d}, J=249.6 \mathrm{~Hz})$, 148.2, 136.7, 135.2, 131.5 ($\mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}$), 128.6, 127.7, 126.7, $126.4,125.6(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 122.0,121.4,119.9,117.5,116.0(\mathrm{~d}, J$ $=21.7 \mathrm{~Hz}$), 54.3. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-111.7$. Elemental analysis: calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{FN}_{2}$ (302.34): C 79.45, H 5.00; found: C 79.34, H 5.12 .

2-Benzyl-3-phenyl-2H-indazole (11): ${ }^{[10]}$ From 2-benzyl-2Hindazole ($0.270 \mathrm{~g}, 1.3 \mathrm{mmol}$) and bromobenzene ($0.157 \mathrm{~g}, 1 \mathrm{mmol}$), 11 was obtained after purification by flash chromatography on silica gel (pentane-Et $t_{2} \mathrm{O}, 80-20$) in $77 \%(0.219 \mathrm{~g})$ yield as a yellow solid (mp: 120-122 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.85(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.38(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.33-7.25$ (m, 3H), 7.18-7.10 (m, 3H), 5.69 (s, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=148.2,136.8,136.3,129.6,129.5$, $128.8,128.7,128.5,127.5,126.8,126.2,121.8,121.2,120.2$, 117.3, 54.2.

2-Benzyl-3-(p-tolyl)-2H-indazole (12): ${ }^{[20]}$ From 2-benzyl-2Hindazole ($0.270 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 4 -bromotoluene $(0.171 \mathrm{~g}, 1$ $\mathrm{mmol}), 12$ was obtained after purification by flash chromatography on silica gel (pentane-Et2O, 80-20) in $80 \%(0.238 \mathrm{~g})$ yield as a yellow solid (mp: 124-126 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.10(\mathrm{~m}, 11$ $\mathrm{H}), 5.70(\mathrm{~s}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 148.3, 138.7, 136.9, 136.5, 129.6, 129.4, 128.5, 127.5, 126.8, $126.6,126.2,121.6,121.2,120.3,117.3,54.1,21.2$.

2-Benzyl-3-(4-methoxyphenyl)-2H-indazole (13): From 2-benzyl2 H -indazole ($0.270 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 4-bromoanisole $(0.187 \mathrm{~g}, 1$ mmol), 13 was obtained after purification by flash chromatography on silica gel (pentane-Et $2 \mathrm{O}, 75-25$) in $79 \%(0.248 \mathrm{~g})$ yield as a green solid (mp: 162-164 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.78$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.20(\mathrm{~m}, 6 \mathrm{H})$, 7.18-7.00 (m, 5H), 5.62 (s, 2H), 3.87 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=159.9,148.2,136.9,136.3,130.9,128.5,127.5,126.7$, 126.2, 121.7, 121.5, 121.2, 120.3, 117.3, 114.3, 55.2, 54.1. Elemental analysis: calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ (314.39): C 80.23, H 5.77; found: C 80.40, H 5.87.

4-(2-Benzyl-2H-indazol-3-yl)-N,N-dimethylaniline (14): From 2 benzyl-2H-indazole ($0.270 \mathrm{~g}, 1.3 \mathrm{mmol}$) and $4-\mathrm{N}, \mathrm{N}$-dimethylaniline
($0.200 \mathrm{~g}, 1 \mathrm{mmol}$), 14 was obtained after purification by flash chromatography on silica gel (pentane-Et ${ }_{2} \mathrm{O}, 40-60$) in 10% (0.033 g) yield in an impure form as a brown solid (mp: 190-192 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.75$ (bs, 1 H$), 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.35-7.23 (m, 6H), 7.20-7.02 (m, 3H), 6.81 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.65$ (s, 2H), 3.04 ($\mathrm{s}, 6 \mathrm{H}$). $\left.{ }^{13} \mathrm{C} \operatorname{NMR~(100~MHz,~} \mathrm{CDCl}_{3}\right): \delta=150.4$, $148.3,137.2,130.5,128.9,128.7,127.5,126.9,126.3,121.2$, 120.8, 117.3, 112.3, 54.2, 40.3.

3-(2-Benzyl-2H-indazol-3-yl)benzonitrile (15): From 2-benzyl-2Hindazole ($0.270 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 3 -bromobenzonitrile $(0.182 \mathrm{~g}, 1$ $\mathrm{mmol}), 15$ was obtained after purification by flash chromatography on silica gel (pentane- $\mathrm{Et}_{2} \mathrm{O}, 80-20$) in $91 \%(0.281 \mathrm{~g})$ yield as a yellow solid (mp: 96-98 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.81$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{dt}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{bs}, 1 \mathrm{H})$, $7.64(\mathrm{dt}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 2 \mathrm{H}), 5.64(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=148.1,136.2,133.6,133.4,132.8,132.0,130.9,129.7$, 128.7, 127.9, 126.6, 126.5, 122.7, 121.4, 119.2, 117.8, 117.6, 113.2, 54.6. Elemental analysis: calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{3}$ (309.36): C 81.53, H 4.89; found: C 81.40, H 5.00.

2-Benzyl-3-(3,5-bis(trifluoromethyl)phenyl)-2H-indazole (16): From 2-benzyl-2H-indazole ($0.270 \mathrm{~g}, 1.3 \mathrm{mmol}$) and $3,5-$ bis(trifluoromethyl)bromobenzene ($0.293 \mathrm{~g}, 1 \mathrm{mmol}$), 16 was obtained after purification by flash chromatography on silica gel (pentane- $\mathrm{Et}_{2} \mathrm{O}, 95-5$) in $90 \%(0.378 \mathrm{~g})$ yield as a yellow solid (mp : $100-102{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.99(\mathrm{~s}, 1 \mathrm{H}), 7.86$ (s, $2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.10$ $(\mathrm{m}, 2 \mathrm{H}), 5.65(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.2$, $136.1,132.5,132.4(q, J=33.8 \mathrm{~Hz}), 132.0,129.7,128.9,128.2$, 126.8, 126.7, 123.3, $122.3(\mathrm{~m}), 122.5(\mathrm{q}, J=273.0 \mathrm{~Hz}), 121.8$, 119.0, 117.9, 55.2. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-63.0$. Elemental analysis: calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{~N}_{2}$ (420.35): C 62.86, H 3.36; found: C 62.99, H 3.47.

2-Benzyl-3-(naphthalen-2-yl)-2H-indazole (17): From 2-benzyl2 H -indazole ($0.270 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 2-bromonaphthalene (0.207 g , $1 \mathrm{mmol}), 17$ was obtained after purification by flash chromatography on silica gel (pentane-Et $\mathrm{t}_{2} \mathrm{O}, 70-30$) in $87 \%(0.291 \mathrm{~g})$ yield as a yellow solid (mp: 138-140 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $7.98(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.80(\mathrm{~m}, 4 \mathrm{H}), 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.62-7.53 (m, 3H), 7.42 (t, J=7.8 Hz, 1H), 7.34-7.25 (m, 3H), 7.227.07 (m, 3H), $5.72(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.3$, $136.9,136.3,133.1,133.0,129.2,128.7,128.6,128.1,127.7$, 127.6, 126.9, 126.8, 126.7, 126.4, 122.0, 121.5, 120.2, 117.5, 54.4. Elemental analysis: calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2}$ (334.41): C 86.20, H 5.43; found: C 86.31, H 5.31 .

2-(2-Benzyl-2H-indazol-3-yl)benzonitrile (18): From 2-benzyl-2Hindazole ($0.270 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 2-bromobenzonitrile ($0.182 \mathrm{~g}, 1$ $\mathrm{mmol}), 18$ was obtained after purification by flash chromatography on silica gel (pentane-Et $t_{2} \mathrm{O}, 80-20$) in $91 \%(0.281 \mathrm{~g})$ yield as a yellow solid (mp: $138-140{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $7.81(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.55-$
7.47 (m, 1H), 7.45 (d, J = 8.6 Hz, 1H), 7.41-7.30 (m, 2H), 7.23-7.16 (m, 3H), 7.14 (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.94(\mathrm{~m}, 2 \mathrm{H}), 5.71(\mathrm{~d}, J=$ $15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=147.9,135.8,133.4,133.0,132.7,131.6,131.5,129.4$, 128.5, 127.7, 126.9, 126.3, 122.6, 122.1, 119.4, 117.6, 117.0 113.5, 55.1. Elemental analysis: calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{3}$ (309.36): C 81.53, H 4.89; found: C 81.61, H 5.02 .

2-Benzyl-3-(2-(trifluoromethyl)phenyl)-2H-indazole (19): From 2-benzyl-2H-indazole ($0.270 \mathrm{~g}, 1.3 \mathrm{mmol})$ and 2(trifluoromethyl)bromobenzene ($0.225 \mathrm{~g}, 1 \mathrm{mmol}$), 19 was obtained after purification by flash chromatography on silica gel (pentane$\left.\mathrm{Et}_{2} \mathrm{O}, 95-5\right)$ in $76 \%(0.268 \mathrm{~g})$ yield as a green solid (mp: 142-144 $\left.{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.02(\mathrm{~m}, 3 \mathrm{H}), 5.57$ (d, $J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=147.9,136.0,133.6,132.2,131.6,130.7$ (q, $J=30.3$ $\mathrm{Hz}), 129.8,128.5,128.0(\mathrm{~m}), 127.8,127.5,126.6(q, J=5.0 \mathrm{~Hz})$, 126.1, 123.2 (q, $J=273.8 \mathrm{~Hz}$), 122.9, 121.8, 120.0, 117.4, 54.9. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-60.2$. Elemental analysis: calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2}$ (352.35): C 71.58, H 4.29; found: C 71.30, H 4.18 .

2-Benzyl-3-(2-fluorophenyl)-2H-indazole (20): From 2-benzyl2 H -indazole ($0.270 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 2-bromofluorobenzene (0.175 $\mathrm{g}, 1 \mathrm{mmol}$), 20 was obtained after purification by flash chromatography on silica gel (pentane-Et ${ }_{2} \mathrm{O}, 90-10$) in 80\% (0.242 g) yield as a yellow solid (mp: 108-110 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.82(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-$ $7.42(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 2 \mathrm{H}), 5.62(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=159.7(\mathrm{~d}, J=249.0 \mathrm{~Hz}), 148.3,136.2,132.0(\mathrm{~d}, J=2.2$ $\mathrm{Hz}), 131.2(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}), 129.9,128.4,127.6,127.1,126.2,124.4$ (d, $J=3.7 \mathrm{~Hz}$), 122.1, 122.0, 119.9, 117.5, 117.3, 116.2 (d, $J=21.6$ $\mathrm{Hz}), 54.9(\mathrm{~d}, J=2.6 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-$ 112.0. Elemental analysis: calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{FN} 2$ (302.34): C 79.45, H 5.00 ; found: C 79.30, H 4.88 .

2-Benzyl-3-(2-chlorophenyl)-2H-indazole (21): From 2-benzyl2 H -indazole ($0.270 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 2-bromochlorobenzene (0.191 $\mathrm{g}, 1 \mathrm{mmol}$), 21 was obtained after purification by flash chromatography on silica gel (pentane-Et ${ }_{2} \mathrm{O}, 80-20$) in 73% (0.232 g) yield as a brown oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.82(\mathrm{~d}, \mathrm{~J}=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.00$ $(\mathrm{m}, 2 \mathrm{H}), 5.63(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=148.1$, 136.1, 134.8, 133.0, 132.6, 130.7, 130.0, 128.7, 128.4, 127.7, 127.3, 126.8, 126.1, 122.0, 121.8, 120.0, 117.5, 55.0. Elemental analysis: calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClN}_{2}$ (318.80): C 75.35, H 4.74; found: C 75.50, H 4.57 .

2-Benzyl-3-(naphthalen-1-yl)-2H-indazole (22): From 2-benzyl2 H -indazole ($0.270 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 1 -bromonaphthalene $(0.207 \mathrm{~g}$, 1 mmol), $\mathbf{2 2}$ was obtained after purification by flash chromatography on silica gel (pentane-Et $\left.t_{2} \mathrm{O}, 70-30\right)$ in $79 \%(0.264 \mathrm{~g})$ yield as a yellow oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$,
7.98 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.91$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 2 \mathrm{H})$, $7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.06$ ($\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.01-6.95 (m, 2H), $5.61(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.38(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.2$, 136.2, 134.3, 133.5, 132.2, 129.7, 129.2, 128.3, 128.2, 127.5, 127.3, 126.9, 126.8, 126.3, 126.2, 125.2, 125.1, 122.6, 121.6, 120.3, 117.4, 54.7. Elemental analysis: calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2}$ (334.41): C 86.20, H 5.43; found: C 86.14, H 5.50.

2-Benzyl-3-(pyridin-3-yl)-2H-indazole (23): From 2-benzyl-2Hindazole ($0.270 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 3-bromopyridine ($0.158 \mathrm{~g}, 1$ $\mathrm{mmol}), 23$ was obtained after purification by flash chromatography on silica gel (pentane- $\mathrm{Et}_{2} \mathrm{O}, 60-40$) in $83 \%(0.236 \mathrm{~g})$ yield as a yellow solid (mp: 122-124 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 8.71 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{dd}, J=4.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-$ $7.33(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.65(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=150.0$, 149.7, 148.2, 136.7, 136.3, 132.5, 128.7, 127.8, 126.6, 126.4, 125.9, 123.5, 122.5, 121.7, 119.4, 117.6, 54.6. Elemental analysis: calcd (\%) for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3}$ (285.34): C 79.98, H 5.30; found: C 80.12 , H 5.14.

3-(2-Benzyl-2H-indazol-3-yl)quinoline (24): From 2-benzyl-2Hindazole ($0.270 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 3-bromoquinoline $(0.208 \mathrm{~g}, 1$ $\mathrm{mmol}), 24$ was obtained after purification by flash chromatography on silica gel (pentane-Et $2 \mathrm{O}, 55-45$) in $93 \%(0.311 \mathrm{~g})$ yield as a yellow solid (mp: 186-188 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 9.01 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.20 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.11$ (d, $J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.55(\mathrm{~m}$, $2 \mathrm{H}), 7.37(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 3 \mathrm{H})$, $5.68(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=150.2,148.2,147.5$, $136.4,136.3,132.6,130.3,129.3,128.6,127.8,127.7,127.3$, $127.2,126.6,126.4,122.8,122.5,121.9,119.4,117.6,54.6$. Elemental analysis: calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3}$ (335.40): C 82.36, H 5.11; found: C 82.40, H 4.98.

2-Benzyl-3-(pyrimidin-5-yl)-2H-indazole (25): From 2-benzyl-2Hindazole ($0.270 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 5-bromopyrimidine ($0.159 \mathrm{~g}, 1$ $\mathrm{mmol}), 25$ was obtained after purification by flash chromatography on silica gel (pentane-Et $\mathrm{t}_{2} \mathrm{O}, 55-45$) in $92 \%(0.263 \mathrm{~g})$ yield as a yellow solid (mp: 80-100 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.24$ (s, 1H), $8.74(\mathrm{~s}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.30-6.99(\mathrm{~m}, 2 \mathrm{H}), 5.60(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.1,156.5,148.1,135.8,128.7,128.6,128.0,126.5,126.4$, $124.5,123.2,122.0,118.7,117.8,54.8$. Elemental analysis: calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4}$ (286.33): C 75.50, H 4.93; found: C 75.66, H 5.11.

1-(4-(2-Hexyl-2H-indazol-3-yl)phenyl)propan-1-one (26): From 2-hexyl-2H-indazole $(0.263 \mathrm{~g}, \quad 1.3 \mathrm{mmol})$ and 4bromopropiophenone ($0.213 \mathrm{~g}, 1 \mathrm{mmol}$), 26 was obtained after purification by flash chromatography on silica gel (pentane-Et2O, $75-25)$ in $81 \%(0.270 \mathrm{~g})$ yield as a yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=8.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.06(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{q}, J=7.4 \mathrm{~Hz}$,

2H), 2.00-1.88 (m, 2H), 1.30-1.15 (m, 9H), 0.79 (t, J = 7.4 Hz, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.7,147.9,136.4,134.3,134.2$, 129.5, 128.5, 126.1, 122.1, 121.1, 119.6, 117.2, 50.8, 31.8, 31.0, 30.5, 26.1, 22.2, 13.7, 8.0. Elemental analysis: calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}$ (334.46): C 79.00, H 7.84; found: C 79.14, H 7.74.

2-nHexyl-3-phenyl-2H-indazole (27): From 2-nhexyl-2H-indazole ($0.263 \mathrm{~g}, 1.3 \mathrm{mmol}$) and bromobenzene ($0.157 \mathrm{~g}, 1 \mathrm{mmol}$), 27 was obtained after purification by flash chromatography on silica ge (pentane- $\left.\mathrm{Et}_{2} \mathrm{O}, 85-15\right)$ in $78 \%(0.217 \mathrm{~g})$ yield as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.69$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.65-7.45 (m, $6 \mathrm{H}), 7.32(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 2.05-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.15(\mathrm{~m}, 6 \mathrm{H}), 0.83(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=147.9,135.7,129.9,129.7$, $128.9,128.6,126.1,121.5,121.2,120.1,117.1,50.7,31.1,30.7$, 26.2, 22.4, 13.9. Elemental analysis: calcd (\%) for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2}$ (278.40): C 81.97, H 7.97; found: C 82.04, H 7.87 .

2-nHexyl-3-(pyrimidin-5-yl)-2H-indazole (28): From 2-nhexyl-2Hindazole ($0.263 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 5 -bromopyrimidine $(0.159 \mathrm{~g}, 1$ mmol), $\mathbf{2 8}$ was obtained after purification by flash chromatography on silica gel (pentane-Et2O, 65-35) in $93 \%(0.260 \mathrm{~g})$ yield as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.28$ (s, 1H), 8.88 (s, 2 H), 7.71 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.28 (t, $J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.00$ $1.88(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.15(\mathrm{~m}, 6 \mathrm{H}), 0.78(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=158.1,156.7,148.0,128.1,126.4,124.9$, $122.9,121.7,118.6,117.6,51.0,31.0,30.7,26.1,22.2,13.7$. Elemental analysis: calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{4}$ (280.38): C 72.83, H 7.19; found: C 72.70, H 7.00 .

4-(2-Isobutyl-2H-indazol-3-yl)benzonitrile (29): From 2-isobutyl2 H -indazole ($0.226 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 4-bromobenzonitrile (0.182 g , $1 \mathrm{mmol}), 29$ was obtained after purification by flash chromatography on silica gel (pentane-Et2O, 85-15) in $87 \%(0.239 \mathrm{~g})$ yield as a white solid (mp: 114-116 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.82(\mathrm{~d}, \mathrm{~J}$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.22(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.43-2.29(\mathrm{~m}, 1 \mathrm{H}), 0.78(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=147.8,134.4,133.8,132.6$, $130.1,126.2,122.4,121.1,119.2,118.1,117.3,112.0,57.9,29.7$ 19.6. Elemental analysis: calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3}$ (275.36): C 78.52, H 6.22; found: C 78.67, H 5.99.

2-Isobutyl-3-(4-nitrophenyl)-2H-indazole (30): From 2-isobutyl2 H -indazole ($0.226 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 4-bromonitrobenzene (0.208 $\mathrm{g}, 1 \mathrm{mmol}$), 30 was obtained after purification by flash chromatography on silica gel (pentane-Et $\mathrm{t}_{2} \mathrm{O}, 75-25$) in 94% (0.277 g) yield as a yellow solid (mp: 138-140 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta=8.40$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.75 (d, $\left.J=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.69$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$ $7.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.46-2.32(\mathrm{~m}, 1 \mathrm{H})$ $0.80(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=148.0$, 147.5, 136.6, 133.6, 130.4, 126.4, 124.2, 122.8, 121.4, 119.2, 117.6, 58.2, 29.9, 19.8. Elemental analysis: calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$ (295.34): C 69.14, H 5.80 ; found: C 69.00 , H 5.78 .
(4-(2-Isopropyl-2H-indazol-3-yl)phenyl)(phenyl)methanone (31): From 2-isopropyl-2H-indazole ($0.208 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 4bromobenzophenone ($0.261 \mathrm{~g}, 1 \mathrm{mmol}$), 31 was obtained after purification by flash chromatography on silica gel (pentane-Et $\mathrm{t}_{2} \mathrm{O}$, $85-15)$ in $90 \%(0.306 \mathrm{~g})$ yield as a yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=8.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.81$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ (t, J=8.0 Hz, 2H), 7.31 (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.93 (sept., $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.65 (d, $J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=195.6,147.9,137.3,137.0,133.8,133.4,132.5$, $130.5,129.8,129.4,128.3,125.9,122.0,121.0,119.6,117.4,51.5$, 23.2. Elemental analysis: calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ (340.43): C 81.15, H 5.92 ; found: C 81.43, H 5.99 .

2-Isopropyl-3-(p-tolyl)-2H-indazole (32): From 2-isopropyl-2Hindazole ($0.208 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 4-bromotoluene ($0.171 \mathrm{~g}, 1$ $\mathrm{mmol}), 32$ was obtained after purification by flash chromatography on silica gel (pentane-Et $\mathrm{t}_{2} \mathrm{O}, 90-10$) in $86 \%(0.215 \mathrm{~g})$ yield as a white solid (mp: 112-114 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.77(\mathrm{~d}, \mathrm{~J}$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.30(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.89$ (sept., $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.48(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=147.9,138.7,134.9,129.7,129.6,127.0,125.9,121.3,131.0$, 120.2, 117.2, 51.2, 23.3, 21.3. Elemental analysis: calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2}$ (250.35): C 81.56, H 7.25; found: C 81.31, H 7.27.

2-(2-Isopropyl-2H-indazol-3-yl)benzonitrile (33): From 2-isopropyl-2H-indazole ($0.208 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 2-bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$), 33 was obtained after purification by flash chromatography on silica gel (pentane-Et $2 \mathrm{O}, 85-15$) in 93% (0.243 g) yield as a yellow solid (mp: 150-152 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta=7.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.8 \mathrm{~Hz}$, 1 H), 4.63 (sept., $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.71$ (d, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.53$ (d, J $=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.0,133.7$, 133.6, 133.1, 131.8, 130.4, 129.5, 126.1, 122.3, 121.8, 119.4, 117.7, 117.2, 113.9, 52.3, 23.6, 22.5. Elemental analysis: calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3}$ (261.33): C 78.13, H 5.79; found: C 78.20, H5.70.

4-(2-Benzyl-6-nitro-2H-indazol-3-yl)benzonitrile (34): From 2-benzyl-6-nitro-2H-indazole ($0.329 \mathrm{~g}, 12 \mathrm{mmol}$) and 4bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$), 34 was obtained after purification by flash chromatography on silica gel (pentane- $\mathrm{Et}_{2} \mathrm{O}$, $65-35)$ in $70 \%(0.248 \mathrm{~g})$ yield as a yellow solid (mp: $172-174{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.77(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.04(\mathrm{~m}, 2 \mathrm{H}), 5.69(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=147.0,146.3,135.3,135.2$, 133.0, 132.9, 130.3, 129.0, 128.4, 126.9, 123.8, 121.0, 117.9, 116.7, 115.8, 113.4, 55.6. Elemental analysis: calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$ (354.37): C 71.18, H 3.98; found: C 71.27, H 3.04 .

4-(2-Benzyl-4-bromo-2H-indazol-3-yl)benzonitrile (35): From 2-benzyl-4-bromo-2 H -indazole $(0.373 \mathrm{~g}, 1.3 \mathrm{mmol})$ and 4 bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$), 35 was obtained after purification by flash chromatography on silica gel (pentane-Et2O,
$80-20)$ in $63 \%(0.244 \mathrm{~g})$ yield as a yellow solid (mp: $136-138{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.82-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.30-7.10(\mathrm{~m}, 5 \mathrm{H}), 7.00-6.90(\mathrm{~m}, 2 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=148.6$, 135.7, 134.7, 134.2, 132.4, 131.5, 128.7, 128.1, 127.0, 126.9, 126.1, 120.9, 118.2, 117.3, 113.3, 112.9, 55.1. Elemental analysis: calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{BrN}_{3}$ (388.27): C 64.96, H 3.63; found: C 65.10, H 3.47.

2-Benzyl-4-bromo-3-(4-nitrophenyl)-2H-indazole (36): From 2-benzyl-4-bromo- 2 H -indazole $(0.373 \mathrm{~g}, 1.3 \mathrm{mmol})$ and 4bromonitrobenzene ($0.208 \mathrm{~g}, 1 \mathrm{mmol}$), 36 was obtained after purification by flash chromatography on silica gel (pentane-Et $\mathrm{t}_{2} \mathrm{O}$, $70-30)$ in $68 \%(0.277 \mathrm{~g})$ yield as a yellow solid (mp: 140-142 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.27(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.18(\mathrm{t}, \mathrm{J}$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.65(\mathrm{~m}, 2 \mathrm{H}), 5.47(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=148.5,148.3,136.0,135.6,134.2,132.7,128.7,128.1$, 126.9, 126.2, 122.8, 120.9, 117.3, 112.9, 55.1. Elemental analysis: calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{BrN}_{3} \mathrm{O}_{2}$ (408.26): C 58.84, H 3.46; found: C 58.98, H 3.30.

N-(2-Benzyl-3-(4-cyanophenyl)-2H-indazol-5-yl)acetamide (37) From N -(2-benzyl-2H-indazol-5-yl)acetamide ($0.344 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 4 -bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$), 37 was obtained after purification by flash chromatography on silica gel (pentane-Et $\mathrm{t}_{2} \mathrm{O}$, $85-15)$ in $75 \%(0.274 \mathrm{~g})$ yield as an orange solid ($\mathrm{mp}: 218-220^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.07(\mathrm{~s}, 1 \mathrm{H}), 7.73-7.63(\mathrm{~m}, 4 \mathrm{H})$, $7.50(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.05-6.99 (m, 2H), 5.61 (s, 2H), 2.15 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=168.6,146.0,136.2,134.2,134.1,133.0,132.7,130.0$, 128.8, 128.0, 126.6, 122.4, 121.4, 118.4, 118.2, 112.2, 108.8, 54.8, 24.4. Elemental analysis: calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$ (366.42): C 75.39, H 4.95; found: C 75.50, H 4.81 .

4-(2-Benzyl-5-nitro-2H-indazol-3-yl)benzonitrile (38): From a mixture of 2-benzyl-5-nitro-2H-indazole and 1-benzyl-5-nitro-1Hindazole (ratio 1:1) ($0.658 \mathrm{~g}, 2.6 \mathrm{mmol}$) and 4-bromobenzonitrile ($0.182 \mathrm{~g}, 1 \mathrm{mmol}$), 38 was obtained after purification by flash chromatography on silica gel (pentane-Et ${ }_{2} \mathrm{O}, 65-35$) in 88% (0.311 g) yield as a brown solid (mp: 204-206 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=8.54(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.28$ (m, 3H), 7.09 (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 5.67 (s, 2H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=149.1,143.7,138.4,135.2,132.9,132.3,130.1,128.9$, 128.3, 126.8, 120.7, 120.0, 118.8, 118.7, 117.7, 113.6, 55.3. Elemental analysis: calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$ (354.36): C 71.18, H 3.98; found: C 71.04, H 4.17 .

2-Benzyl-3-(3,5-bis(trifluoromethyl)phenyl)-5-nitro-2H-indazole

(39): From a mixture of 2-benzyl-5-nitro-2H-indazole and 1-benzyl-5-nitro-1 H -indazole (ratio $1: 1$) ($0.658 \mathrm{~g}, 2.6 \mathrm{mmol}$) and 3,5bis(trifluoromethyl)bromobenzene ($0.293 \mathrm{~g}, 1 \mathrm{mmol}$), 39 was obtained after purification by flash chromatography on silica gel (pentane- $\mathrm{Et}_{2} \mathrm{O}, 90-10$) in $79 \%(0.367 \mathrm{~g})$ yield as a brown oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.50(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.06(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}$, 3H), 7.15-7.10 (m, 2H), 5.63 (s, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\delta=148.9,143.9,136.9,135.1,132.7(\mathrm{q}, J=33.8 \mathrm{~Hz}), 130.2,129.8$ (m), 128.9, 128.5, 127.0, 123.5 (m), 122.6 (q, $J=273.0 \mathrm{~Hz}$), 120.8, 120.4, 118.9, 118.2, 55.8. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-$ 62.9. Elemental analysis: calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}$ (465.36): C 56.78 , H 2.82 ; found: C 56.89, H 2.67.

3-(2-Benzyl-5-nitro-2H-indazol-3-yl)quinolone (40): From a mixture of 2-benzyl-5-nitro-2H-indazole and 1-benzyl-5-nitro-1Hindazole (ratio 1:1) ($0.658 \mathrm{~g}, 2.6 \mathrm{mmol}$) and 3-bromoquinoline ($0.208 \mathrm{~g}, 1 \mathrm{mmol}$), 40 was obtained after purification by flash chromatography on silica gel (pentane-Et ${ }_{2} \mathrm{O}, 55-45$) in 77% (0.293 g) yield as a brown oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.89$ (s, $1 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.26-8.15(\mathrm{~m}, 3 \mathrm{H}), 7.92-7.84(\mathrm{~m}, 3 \mathrm{H}), 7.73-7.65$ $(\mathrm{m}, 1 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 2 \mathrm{H}), 5.71(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=149.4$, 149.1, 148.0, 143.5, 137.4, $137.1,135.4,131.1,129.4,128.9,128.3,128.1,127.8,127.0$, 126.9, 121.2, 120.7, 120.5, 118.9, 118.6, 55.3. Elemental analysis: calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$ (380.41): C 72.62, H 4.24; found: C 72.80, H 4.14.

3-(2-Benzyl-6-nitro-2H-indazol-3-yl)quinolone (41): From a mixture of 2-benzyl-6-nitro-2H-indazole and 1-benzyl-6-nitro-1Hindazole (ratio 1:1) ($0.658 \mathrm{~g}, 2.6 \mathrm{mmol}$) and 3-bromoquinoline ($0.208 \mathrm{~g}, 1 \mathrm{mmol}$), 41 was obtained after purification by flash chromatography on silica gel (pentane-Et ${ }_{2} \mathrm{O}, 55-45$) in 75% (0.285 g) yield as a yellow solid (mp: 198-200 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=8.97(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.17$ $(\mathrm{s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.63(\mathrm{~m}$, $2 \mathrm{H})$, 7.32-7.26 (m, 3H), 7.17-7.10 (m, 2H), $5.72(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=149.8,147.9,146.9,146.2,137.1,135.5$, 134.0, 131.0, 129.4, 128.9, 128.4, 128.0, 127.8, 127.2, 127.0, 124.3, 121.7, 121.0, 116.4, 115.8, 55.6. Elemental analysis: calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$ (380.41): C 72.62, H 4.24; found: C 72.87, H 4.30 .

4-(1-Benzyl-1H-indazol-3-yl)benzonitrile (42): From 1-benzyl-1Hindazole ($0.270 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 4-bromobenzonitrile ($0.182 \mathrm{~g}, 1$ $\mathrm{mmol}), 42$ was obtained after purification by flash chromatography on silica gel (pentane-Et $\mathrm{t}_{2} \mathrm{O}, 85-15$) in $38 \%(0.117 \mathrm{~g})$ yield as a yellow solid (mp: 126-128 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $8.14(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.42-7.23(\mathrm{~m}, 8 \mathrm{H}), 5.68(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=141.9,141.2,138.2,136.3,132.5,128.8,127.9,127.6$, 127.1, 126.7, 122.0, 121.9, 120.8, 119.0, 111.0, 110.0, 53.3. Elemental analysis: calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{3}$ (309.36): C 81.53, H 4.89; found: C 81.47, H 5.10 .

1-Benzyl-3-(4-(trifluoromethyl)phenyl)-1H-indazole (43): From 1-benzyl-1H-indazole ($0.270 \mathrm{~g}, \quad 1.3 \mathrm{mmol})$ and 4 (trifluoromethyl)bromobenzene ($0.225 \mathrm{~g}, 1 \mathrm{mmol}$), 43 was obtained after purification by flash chromatography on silica gel (pentane$\mathrm{Et}_{2} \mathrm{O}, 95-5$) in $34 \%(0.120 \mathrm{~g})$ yield as a brown solid (mp: $84-86^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.14(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.26(\mathrm{~m}, 8 \mathrm{H}), 5.68(\mathrm{~s}$, 2H). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=142.5,141.1,137.2,136.5$, $129.5(\mathrm{q}, J=32.4 \mathrm{~Hz}), 128.7,127.8,127.5,127.1,126.6,125.7$ (q, $J=3.8 \mathrm{~Hz}), 124.4(\mathrm{q}, J=272.0 \mathrm{~Hz}), 122.0,121.7,121.0,109.9$,
53.2. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-62.5$. Elemental analysis: calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2}$ (352.35): C 71.58, H 4.29; found: C 71.37, H 4.14 .

1-Benzyl-5-nitro-3-(4-(trifluoromethyl)phenyl)-1H-indazole (44): From 2-benzyl-5-nitro-2H-indazole ($0.329 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 4(trifluoromethyl)bromobenzene ($0.225 \mathrm{~g}, 1 \mathrm{mmol}$), 44 was obtained after purification by flash chromatography on silica gel (pentane$\left.\mathrm{Et}_{2} \mathrm{O}, 95-5\right)$ in $36 \%(0.143 \mathrm{~g})$ yield as a yellow solid (mp: 212-214 $\left.{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.97(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.27$ (dd, $J=9.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.71(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=145.5,143.1,142.7,135.4,135.3$, 130.7 (q, $J=30.6 \mathrm{~Hz}$), 129.0, 128.4, 127.7, 127.2, 126.1 (q, $J=3.8$ $\mathrm{Hz}), 123.9(\mathrm{q}, J=273.0 \mathrm{~Hz})$, 121.8, 121.2, 118.9, 110.2, 53.8. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-62.7$. Elemental analysis: calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}$ (397.35): C 63.48, H 3.55; found: C 63.19, H 3.67.

Acknowledgements

We thank the CNRS and "Rennes Metropole" for providing financial support.

Keywords: palladium $\cdot \mathrm{C}-\mathrm{H}$ bond activation $\cdot 2 \mathrm{H}$-indazoles \cdot aryl bromides • coupling

References

[1] a) S. Ali, D. Bashir Ahmad, P. Vidya, F. Mazahar, Mini Rev. Med. Chem. 2013, 13, 1792-1800; b) D. D. Gaikwad, A. D. Chapolikar, C. G. Devkate, K. D. Warad, A. P. Tayade, R. P. Pawar, A. J. Domb, Eur. J. Med. Chem. 2015, 90, 707-731.
[2] I. A. Murray, G. Krishnegowda, B. C. DiNatale, C. Flaveny, C. Chiaro, J.M. Lin, A. K. Sharma, S. Amin, G. H. Perdew, Chem. Res. Toxicol. 2010, 23, 955-966.
[3] N. Nakamura, Y. Tajima, K. Sakai, Heterocycles, 1982, 17, 235-245.
[4] a) Y. Akita, A. Inoue, K. Yamamoto, A. Ohta, T. Kurihara, M. Shimizu, Heterocycles 1985, 23, 2327-2333; b) A. Ohta, Y. Akita, T. Ohkuwa, M. Chiba, R. Fukunaga, A. Miyafuji, T. Nakata, N. Tani, Y. Aoyagi, Heterocycles 1990, 31, 1951-1958; c) D. Alberico, M. E. Scott, M. Lautens, Chem. Rev. 2007, 107, 174-238; d) T. Satoh, M. Miura, Chem. Lett. 2007, 36, 200-205; e) B.-J. Li, S.-D. Yang, Z.-J. Shi, Synlett 2008, 949-957; f) L. Ackermann, R. Vicente, A. Kapdi, Angew. Chem. Int. Ed. 2009, 48, 9792-9826; g) F. Bellina, R. Rossi, Tetrahedron 2009, 65, 10269-10310; h) G. P. McGlacken, L. M. Bateman, Chem. Soc. Rev. 2009, 38, 2447-2464; i) J. Roger, A. L. Gottumukkala, H. Doucet, ChemCatChem 2010, 2, 20-40; j) N. Kuhl, M. N. Hopkinson, J. WencelDelord, F. Glorius, Angew. Chem. Int. Ed. 2012, 51, 10236-10254; k) J. Yamaguchi, A. D. Yamaguchi, K. Itami, Angew. Chem., Int. Ed. 2012, 51, 8960-9009; I) J. Wencel-Delord, F. Glorius, Nature Chem. 2013, 5, 369-375; m) S. I. Kuzhushkov, H. K. Potukuchi, L. Ackermann, Catal. Sci. Technol. 2013, 3, 562-571; n) M. He, J.-F. Soulé, H. Doucet, ChemCatChem 2014, 6, 1824-1859; o) R. Rossi, F. Bellina, M. Lessi, C. Manzini, Adv. Synth. Catal. 2014, 356, 17-117; p) K. Yuan, J.-F. Soulé, H. Doucet, ACS Catal. 2015, 5, 978-991; q) M. R. Yadav, R. K. Rit, M. Shankar, A. K. Sahoo, Asian J. Org. Chem., 2015, 4, 846-864; r) C. B. Bheeter, L. Chen, J.-F. Soulé, H. Doucet, Cat. Sci. Technol. 2016, 6,

2005-2049; s) S. El Kazzouli, G. Guillaumet, Tetrahedron 2016, 72, 6711-6727.
[5] For selected examples of palladium-catalysed intermolecular direct 5arylations of pyrazoles: a) O. Rene, K. Fagnou, Adv. Synth. Catal. 2010, 352, 2116-2120; b) C. Mateos, J. Mendiola, M. Carpintero, J. M. Minguez, Org. Lett. 2010, 12, 4924-4927; c) S. M. Gaulier, R. McKay, N. A. Swain, Tetrahedron Lett. 2011, 52, 6000-6002; d) Y. Yang, C. Kuang, H. Jin, Q. Yang, Z. Zhang, Beilstein J. Org. Chem. 2011, 1656-1658; e) F. Bellina, M. Lessi, C. Manzini, Eur. J. Org. Chem. 2013, 5621-5630; f) E. T. T. Kumpulainen, A. Pohjakallio, Adv. Synth. Catal. 2014, 356, 1555-1561; g) V. O. laroshenko, A. Gevorgyan, O. Davydova, A. Villinger, P. Langer, J. Org. Chem. 2014, 79, 2906-2915; h) M. Brahim, I. Smari, H. Ben Ammar, B. Ben Hassine, J.-F. Soulé, H. Doucet, Org. Chem. Front. 2015, 2, 917-926; i) S. Fuse, T. Morita, K. Johmoto, H. Uekusa, H. Tanaka, Chem. Eur. J. 2015, 21, 14370-14375; j) T. Morita, D. Kobayashi, K. Matsumura, K. Johmoto, H. Uekusa, S. Fuse, T. Takahashi, Chem. Asian J. 2015, 10, 1626-1630.
[6] For selected examples of palladium-catalysed intermolecular direct 4arylations of pyrazoles: a) R. Goikhman, T. L. Jacques, D. Sames, J. Am Chem. Soc., 2009, 131, 3042-3048; b) Y. Fall, H. Doucet, M. Santelli, Synthesis 2010, 127-135; c) T. Yan, L. Chen, C. Bruneau, P. H. Dixneuf, H. Doucet, J. Org. Chem. 2012, 77, 7659-7664.
[7] For examples of palladium-catalysed intermolecular direct arylations of benzisoxazoles: a) M. Shigenobu, K. Takenaka, H. Sasai, Angew. Chem Int. Ed., 2015, 54, 9572-9576; b) M. Aidene, F. Belfessam, J.-F. Soulé, H. Doucet, ChemCatChem 2016, 8, 1583-1590.
[8] For examples of intermolecular palladium-catalysed direct arylations of 1H-indazoles: a) A. Ben-Yahia, M. Nass, S. El Kazzouli, E. M. Essassi, G. Guillaumet, Eur. J. Org. Chem. 2012, 7075-7081; b) M. Naas, S. El Kazzouli, E. M. Essassi, M. Bousmina, G. Guillaumet, J. Org. Chem. 2014, 79, 7286-7293.
[9] a) B. Laleu, M. Lautens, J. Org. Chem. 2008, 73, 9164-9167; b) S. A. Ohnmacht, A. J. Culshaw, M. F. Greaney, Org. Lett. 2010, 12, 224-226.
[10] K. Hattori, K. Yamaguchi, J. Yamaguchi, K. Itami, Tetrahedron 2012, 68, 7605-7612.
[11] For examples of Ir-catalysed C 3 -arylations of 2 H -indazoles: a) B. A. Egan, P. M. Burton, RSC Adv. 2014, 4, 27726-27729; b) S. A. Sadler, A. C. Hones, B. Roberts, D. Blakemore, T. B. Marder, P. G. Steel, J. Org. Chem. 2015, 80, 5308-5314.
[12] For C3-arylation of 2 H -indazoles via Negishi coupling: K. Basu, M. Poirier, R. T. Ruck, Org. Lett. 2016, 18, 3218-3221.
[13] For other examples of preparation of 3-arylated 2H-indazoles: a) Y. Lian, R. G. Bergman, L. D. Lavis, J. A. Ellman, J. Am. Chem. Soc. 2013, 135, 7122-7125; b) H. Li, P. Li, L. Wang, Org. Lett. 2013, 15, 620-623; c) X. Geng, C. Wang, Org. Lett. 2015, 17, 2434-2437.
[14] A. H. M. de Vries, J. M. C. A. Mulders, J. H. M. Mommers, H. J. W. Henderickx, J. G. de Vries, Org. Lett. 2003, 5, 3285-3288.
[15] H. Y. Fu, L. Chen, H. Doucet, J. Org. Chem. 2012, 77, 4473-4478.
[16] For examples or Pd-catalysed direct arylations in CPME: a) K. Beydoun, H. Doucet, ChemSusChem 2011, 4, 526-534; b) S. Chikhi, S. Djebbar, J.-F. Soulé, H. Doucet, Chem. Asian J. 2016, 11, 2443-2452.
[17] K. Watanabe, N. Yamagiwa, Y. Torisawa, Org. Process Res. Dev. 2007, 11, 251-258.
$[18]$ a) A. J. Souers, J. Gao, M. Brune, E. Bush, D. Wodka, A. Vasudevan, A. S. Judd, M. Mulhern, S. Brodjian, B. Dayton, R. Shapiro, L. E. Hernandez, K. C. Marsh, H. L. Sham, C. A. Collins, P. R. Kym, J. Med. Chem. 2005, 48, 1318-1321; b) N. E. Genung, L. Wei, G. E. Aspnes, Org. Lett. 2014, 16, 3114-3117.
[19] T. Cantat, E. Génin, C. Giroud, G. Meyer, A. Jutand, J. Organomet. Chem. 2003, 687, 365-376.
[20] L.-J. Huang, M.-L. Shih, H.-S. Chen, S.-L. Pan, C.-M. Teng, F.-Y. Lee, S.-C. Kuo, Bioorg. Med. Chem. 2006, 14, 528-536.

High yields 41 examples
The palladium-catalysed direct arylation of 2 H -indazoles with both electron-deficient and electron-rich aryl bromides for the preparation of 3-aryl-2H-indazoles was found to proceed in high yields using only $0.5-0.1 \mathrm{~mol} \%$ of phosphine-free $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst and KOAc as inexpensive base.

Fatma Belkessam, Mohand Aidene, Jean-François Soulé* Henri Doucet*

Page No. - Page No.

Direct C3-arylation of 2H-indazole derivatives with aryl bromides using a low loading of a phosphine-free palladium-catalyst

[^0]: [a] Dr. F. Belkessam, Dr. M. Aidene
 Département de chimie, Tizi Ouzou University
 BP 17 RP 15000 Tizi-Ouzou, Algeria
 [b] Dr. J.-F. Soulé, Dr. H. Doucet
 Institut des Sciences Chimiques de Rennes, UMR 6226 CNRSUniversité de Rennes "Organométalliques: Matériaux et Catalyse" Campus de Beaulieu, 35042 Rennes, France.
 E-mail: jean-francois.soule@univ-rennes1.fr, henri.doucet@univrennes1.fr

