P. Ruffieux, T. Scharf, I. Philipoussis, H. P. Herzig, R. Voelkel et al., Two step process for the fabrication of diffraction limited concave microlens arrays, Optics Express, vol.16, issue.24, pp.19541-19549, 2008.
DOI : 10.1364/OE.16.019541

M. Brinkman, U. Fotheringham, J. S. Hayden, and Y. Okano, Glass modification techniques for photonic devices, International Symposium on Photonic Glass (ISPG 2002), pp.96-102, 2003.
DOI : 10.1117/12.517324

D. N. Krol, Femtosecond laser modification of glass, Journal of Non-Crystalline Solids, vol.354, issue.2-9, pp.416-424, 2008.
DOI : 10.1016/j.jnoncrysol.2007.01.098

J. Adam and X. Zhang, Chalcogenide glasses: Preparation, properties and applications, Woodhead Publ, Ser. in Electron. and Opt. Mat

X. Zhang, B. Bureau, P. Lucas, C. Boussard-pledel, and J. Lucas, Glasses for Seeing Beyond Visible, Chemistry - A European Journal, vol.127, issue.2, pp.432-442, 2008.
DOI : 10.1016/S1631-0748(02)01450-9

URL : https://hal.archives-ouvertes.fr/hal-00370912

J. Adam, L. Calvez, J. Troles, and V. , Chalcogenide Glasses for Infrared Photonics, International Journal of Applied Glass Science, vol.9, issue.1, pp.287-294, 2015.
DOI : 10.3390/s90907398

URL : https://hal.archives-ouvertes.fr/hal-01194452

L. Calvez, C. Lin, M. Roze, Y. Ledemi, E. Guillevic et al., Similar behaviors of sulfide and selenide-based chalcogenide glasses to form glass ceramics, Optical Components and Materials VII, pp.759802-759803, 2010.
DOI : 10.1117/12.840968

URL : https://hal.archives-ouvertes.fr/hal-00608294

Y. Ledemi, L. Calvez, X. H. Roze, B. Zhang, M. Bureau et al., Totally visible transparent chloro-sulphide glasses based on Ga 2 S 3 -GeS2-CsCh, J. Optoelectron. Adv. Mat, vol.9, pp.3751-3755, 2007.

M. Manevich, M. Klebanov, V. Lyubin, J. Varshal, J. Broder et al., Gap microlithography for chalcogenide micro-lens array fabrication, Chalcogenide Letters, vol.5, pp.61-64, 2008.

Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, Large Area IR Microlens Arrays of Chalcogenide Glass Photoresists by Grayscale Maskless Lithography, ACS Applied Materials & Interfaces, vol.5, issue.15, pp.7094-7100, 2013.
DOI : 10.1021/am401368e

N. P. Eisenberg, M. Manevich, and M. Klebanov, Fabrication and testing of microlens arrays for the IR based on chalcogenide glassy resists, Journal of Non-Crystalline Solids, vol.198, issue.200, pp.766-768, 1996.
DOI : 10.1016/0022-3093(96)00118-4

A. Kovalskiy, M. Vlcek, C. M. Waits, M. Dubey, W. R. Heffner et al., Chalcogenide glass e-beam and photoresists for ultrathin grayscale patterning, Journal of Micro/Nanolithography, MEMS, and MOEMS, vol.8, issue.4, pp.1-11, 2009.
DOI : 10.1117/1.3273966

L. Petit, N. Carlie, T. Anderson, J. Choi, M. Richardson et al., Progress on the Photoresponse of Chalcogenide Glasses and Films to Near-Infrared Femtosecond Laser Irradiation: A Review, IEEE Journal of Selected Topics in Quantum Electronics, vol.14, issue.5, pp.1323-1334, 2008.
DOI : 10.1109/JSTQE.2008.922898

E. A. Sanchez, M. Waldmann, and C. B. Arnold, Chalcogenide glass microlenses by inkjet printing, Applied Optics, vol.50, issue.14, pp.1974-1978, 2011.
DOI : 10.1364/AO.50.001974

A. Velea, F. Jipa, M. Zamfirescu, and R. Dabu, Femtosecond laser processing of chalcogenide glasses, Journal of Intense Pulsed Lasers and Applications in Advanced Physics, vol.3, pp.27-36, 2013.

H. Hisakuni and K. Tanaka, Optical fabrication of microlenses in chalcogenide glasses, Optics Letters, vol.20, issue.9, pp.958-960, 1995.
DOI : 10.1364/OL.20.000958

S. Ramachandran, J. C. Pepper, D. J. Brady, and S. G. Bishop, Micro-optical lenslets by photo-expansion in chalcogenide glasses, Journal of Lightwave Technology, vol.15, issue.8, pp.1371-1377, 1997.
DOI : 10.1109/50.618346

A. Saitoh and K. Tanaka, Self-developing aspherical chalcogenide-glass microlenses for semiconductor lasers, Applied Physics Letters, vol.83, issue.9, pp.1725-1727, 2003.
DOI : 10.1063/1.1432744

L. Calvez, Z. Yang, and P. Lucas, Reversible giant photocontraction in chalcogenide glass, Optics Express, vol.17, issue.21, pp.18581-18589, 2009.
DOI : 10.1364/OE.17.018581

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou et al., Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method, Optics Express, vol.18, issue.19, pp.20334-20343, 2010.
DOI : 10.1364/OE.18.020334

A. Pan, B. Gao, T. Chen, J. Si, C. Li et al., Fabrication of concave spherical microlenses on silicon by femtosecond laser irradiation and mixed acid etching, Optics Express, vol.22, issue.12, pp.15245-15250, 2014.
DOI : 10.1364/OE.22.015245

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen et al., Fabrication of microlens arrays in photosensitive glass by??femtosecond laser direct writing, Applied Physics A, vol.28, issue.58, pp.751-757, 2009.
DOI : 10.1016/S0167-9317(01)00555-X

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky et al., Ultrashort-pulse laser machining of dielectric materials, Journal of Applied Physics, vol.64, issue.9, pp.85-6803, 1999.
DOI : 10.1103/PhysRevLett.80.4076

K. Sugioka and Y. Cheng, Femtosecond laser three-dimensional micro- and nanofabrication, Applied Physics Reviews, vol.50, issue.4, pp.41303-41304, 2014.
DOI : 10.1201/b15030-2

R. Wagner-http, Subwavelength ripple formation induced by tightly focused femtosecond laser radiation, Applied Surface Science, vol.252, issue.24, pp.8576-8579, 2006.
DOI : 10.1016/j.apsusc.2005.11.077

L. Harzic, F. Stracke, and H. Zimmermann, Formation mechanism of femtosecond laser-induced high spatial frequency ripples on semiconductors at low fluence and high repetition rate, Journal of Applied Physics, vol.46, issue.18, pp.183503-183507, 2013.
DOI : 10.1063/1.3693389

A. Ben-yakar and R. L. Byer, Femtosecond laser ablation properties of borosilicate glass, Journal of Applied Physics, vol.69, issue.9, pp.5317-5323, 2004.
DOI : 10.1007/s00339-002-1823-8

A. Ben-yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone et al., Morphology of femtosecond-laser-ablated borosilicate glass surfaces, Applied Physics Letters, vol.83, issue.15, pp.83-3030, 2003.
DOI : 10.1016/S0584-8547(01)00195-1

A. Ben-yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses, Journal of Physics D: Applied Physics, vol.40, issue.5, pp.40-1447, 2007.
DOI : 10.1088/0022-3727/40/5/021

A. Borowiec, M. Mackenzie, G. C. Weatherly, and H. K. Haugen, Transmission and scanning electron microscopy studies of single femtosecond- laser-pulse ablation of silicon, Applied Physics A: Materials Science & Processing, vol.76, issue.2, pp.201-207, 2003.
DOI : 10.1007/s003390201409

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian et al., Rapid Fabrication of Large-Area Concave Microlens Arrays on PDMS by a Femtosecond Laser, ACS Applied Materials & Interfaces, vol.5, issue.19, pp.9382-9385, 2013.
DOI : 10.1021/am402923t

Y. Ou, Q. Yang, F. Chen, Z. Deng, G. Du et al., Direct Fabrication of Microlens Arrays on PMMA With Laser-Induced Structural Modification, IEEE Photonics Technology Letters, vol.27, issue.21, pp.2253-2256, 2015.
DOI : 10.1109/LPT.2015.2459045

I. Blonskyi, V. Kadan, O. Shpotyuk, M. Iovu, P. Korenyuk et al., Filament-induced self-written waveguides in glassy As4Ge30S66, Applied Physics B, vol.13, issue.4, pp.951-956, 2011.
DOI : 10.1364/OPEX.13.003277

P. Masselin, D. Le-coq, E. Bychkov, E. Lépine, C. Lin et al., Laser filamentation in chalcogenide glass, ICONO 2010: International Conference on Coherent and Nonlinear Optics, pp.79931-79932, 2011.
DOI : 10.1117/12.881504

URL : https://hal.archives-ouvertes.fr/hal-00854519

A. Bréhault, L. Calvez, P. Adam, J. Rollin, M. Cathelinaud et al., Moldable multispectral glasses in GeS 2 ???Ga 2 S 3 ???CsCl system transparent from the visible up to the thermal infrared regions, Moldable multispectral glasses in GeS2?Ga2S3?CsCl system transparent from the visible up to the thermal infrared regions, pp.25-30, 2016.
DOI : 10.1016/j.jnoncrysol.2015.04.016

M. Born and E. Wolf, Principles of optics, 1970.
DOI : 10.1017/CBO9781139644181

N. A. Bloembergen, A Brief History of Light Breakdown, Journal of Nonlinear Optical Physics & Materials, vol.06, issue.04, pp.377-385, 1997.
DOI : 10.1142/S0218863597000289

C. B. Schaffer, A. Brodeur, and E. Mazur, Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses, Measurement Science and Technology, vol.12, issue.11, pp.1784-1797, 2001.
DOI : 10.1088/0957-0233/12/11/305

D. Der-linde and H. Schuller, Breakdown threshold and plasma formation in femtosecond laser???solid interaction, Journal of the Optical Society of America B, vol.13, issue.1, pp.216-222, 1996.
DOI : 10.1364/JOSAB.13.000216

I. Blonskyi, V. Kadan, O. Shpotyuk, M. Iovu, and I. Pavlov, Femtosecond filamentation in chalcogenide glasses limited by two-photon absorption, Optical Materials, vol.32, issue.11, pp.1553-1557, 2010.
DOI : 10.1016/j.optmat.2010.07.006

K. Sokolowski-tinten, J. Bialkowski, A. Cavalleri, D. Der-linde, A. Oparin et al., Anisimov, Transient states of matter during short pulse laser ablation, Phys. Rev. Lett, pp.81-224, 1998.

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-sosa, L. Ehrentraut et al., Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics, Journal of the Optical Society of America B, vol.27, issue.5, pp.1065-1076, 2010.
DOI : 10.1364/JOSAB.27.001065

T. Liu, Z. Hao, X. Gao, Z. Liu, and J. Lin, Shadowgraph investigation of plasma shock wave evolution from Al target under 355-nm laser ablation, Chin, Phys. B, vol.23, pp.85203-85204, 2014.

A. Miloshevsky, S. S. Harilal, G. Miloshevsky, and A. Hassanein, Dynamics of plasma expansion and shockwave formation in femtosecond laser-ablated aluminum plumes in argon gas at atmospheric pressures, Physics of Plasmas, vol.14, issue.6, pp.43111-43112, 2014.
DOI : 10.1063/1.4873701.1

K. Sokolowski-tinten, J. Bialkowski, M. Boing, A. Cavalleri, and D. Der-linde, Thermal and nonthermal melting of gallium arsenide after femtosecond laser excitation, Physical Review B, vol.53, issue.18, pp.11805-11808, 1998.
DOI : 10.1063/1.331665

. Tsuchiya, Observation of the complex propagation of a femtosecond laser pulse in a dispersive transparent bulk material, J. Opt. Soc. Am. B, vol.20, pp.597-602, 2003.

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito et al., Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes, Physical Review B, vol.213, issue.89, pp.10083-10087, 2000.
DOI : 10.1016/0009-2614(93)85144-D

I. Blonskyi, M. Brodyn, V. Kadan, O. Shpotyuk, I. Dmytruk et al., Spatiotemporal dynamics of femtosecond filament induced plasma channel in fused silica, Applied Physics B, vol.16, issue.4, pp.829-834, 2009.
DOI : 10.1007/s00340-009-3684-8