L. Porrata, K. Ristow, and J. Colgan, Peripheral blood lymphocyte/monocyte ratio at diagnosis and survival in classical Hodgkin's lymphoma, Haematologica, vol.97, issue.2, pp.262-269, 2012.
DOI : 10.3324/haematol.2011.050138

URL : http://www.haematologica.org/content/haematol/97/2/262.full.pdf

I. Azzaoui, F. Uhel, and D. Rossille, T-cell defect in diffuse large B-cell lymphomas involves expansion of myeloid-derived suppressor cells, Blood, vol.128, issue.8, pp.1081-1092, 2016.
DOI : 10.1182/blood-2015-08-662783

URL : https://hal.archives-ouvertes.fr/hal-01394657

D. Galati, G. Corazzelli, D. Filippi, R. Pinto, and A. , Dendritic cells in hematological malignancies, Critical Reviews in Oncology/Hematology, vol.108, pp.86-96, 2016.
DOI : 10.1016/j.critrevonc.2016.10.006

C. Tudor, H. Bruns, and C. Daniel, Macrophages and Dendritic Cells as Actors in the Immune Reaction of Classical Hodgkin Lymphoma, PLoS ONE, vol.14, issue.12, pp.114345-114369, 2014.
DOI : 10.1371/journal.pone.0114345.s003

K. Chang, G. Huang, D. Jones, and Y. Lin, Distribution Patterns of Dendritic Cells and T Cells in Diffuse Large B-Cell Lymphomas Correlate with Prognoses, Clinical Cancer Research, vol.13, issue.22, pp.6666-6672, 2007.
DOI : 10.1158/1078-0432.CCR-07-0504

V. Bronte, S. Brandau, and S. Chen, Recommendations for myeloidderived suppressor cell nomenclature and characterization standards Nature Communications 7:12150. doi: 10.1038/ncomms12150 30 Myeloid-derived suppressor cells as regulators of the immune system Myeloid-Derived Suppressor Cells: Critical Cells Driving Immune Suppression in the Tumor Microenvironment, Nat Rev Immunol Adv Cancer Res, vol.9, issue.128, pp.162-17495, 2009.
DOI : 10.1038/ncomms12150

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4935811

D. Gabrilovich, S. Ostrand-rosenberg, V. Bronte, T. Greten, M. Manns et al., Coordinated regulation of myeloid cells by tumours, Nature Reviews Immunology, vol.205, issue.4, pp.253-268, 2011.
DOI : 10.1084/jem.20080108

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587148

J. Youn, V. Kumar, and M. Collazo, Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer, Nature Immunology, vol.94, issue.3, pp.211-220, 2013.
DOI : 10.1242/jcs.068924

A. Montero, C. Diaz-montero, and C. Kyriakopoulos, Myeloid-derived Suppressor Cells in Cancer Patients, Journal of Immunotherapy, vol.35, issue.2, pp.107-1152975, 2012.
DOI : 10.1097/CJI.0b013e318242169f

R. Wilcox, A. Feldman, and D. Wada, B7-H1 (PD-L1, CD274) suppresses host immunity in T-cell lymphoproliferative disorders, Blood, vol.114, issue.10, pp.2149-2158, 2009.
DOI : 10.1182/blood-2009-04-216671

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2744574

O. Marini, C. Spina, and E. Mimiola, Identification of granulocytic myeloid-derived suppressor cells (G-MDSCs) in the peripheral blood of Hodgkin and non-Hodgkin lymphoma patients, Oncotarget, vol.7, issue.19, pp.27676-27688, 2016.
DOI : 10.18632/oncotarget.8507

Y. Lin, M. Gustafson, and P. Bulur, Immunosuppressive CD14+HLA-DRlow/- monocytes in B-cell non-Hodgkin lymphoma, Blood, vol.117, issue.3, pp.872-881, 2010.
DOI : 10.1182/blood-2010-05-283820

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3035079

M. Gustafson, R. Abraham, and Y. Lin, Association of an increased frequency of CD14+HLA-DRlo/neg monocytes with decreased time to progression in chronic lymphocytic leukaemia (CLL), British Journal of Haematology, vol.70, issue.5, pp.674-676750, 2012.
DOI : 10.1002/pros.21078

A. Romano, N. Parrinello, and C. Vetro, Circulating myeloid-derived suppressor cells correlate with clinical outcome in Hodgkin Lymphoma patients treated up-front with a risk-adapted strategy, British Journal of Haematology, vol.13, issue.5, pp.689-700, 2015.
DOI : 10.1038/nrc3581

M. Gustafson, Y. Lin, and M. Maas, A Method for Identification and Analysis of Non-Overlapping Myeloid Immunophenotypes in Humans, PLOS ONE, vol.105, issue.6, 2015.
DOI : 10.1371/journal.pone.0121546.s011

J. Irish, Beyond the age of cellular discovery, Nature Immunology, vol.15, issue.12, pp.1095-1097, 2014.
DOI : 10.1016/j.cell.2014.04.005

M. Roussel, P. Ferrell, and A. Greenplate, Mass cytometry deep phenotyping of human mononuclear phagocytes and myeloid-derived suppressor cells from human blood and bone marrow Journal of Leukocyte Biology jlb Absolute monocytosis at diagnosis correlates with survival in diffuse large B-cell lymphoma-possible link with monocytic myeloid-derived suppressor cells, Hematol Oncol, vol.31, pp.65-71, 2013.

C. Wu, X. Wu, and X. Liu, Prognostic Significance of Monocytes and Monocytic Myeloid-Derived Suppressor Cells in Diffuse Large B-Cell Lymphoma Treated with R-CHOP, Cellular Physiology and Biochemistry, vol.39, issue.2, pp.521-530, 2016.
DOI : 10.1159/000445644

V. Kumar, S. Patel, E. Tcyganov, and D. Gabrilovich, The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment, Trends in Immunology, vol.37, issue.3, 2016.
DOI : 10.1016/j.it.2016.01.004

S. Ugel, D. Sanctis, F. Mandruzzato, S. Bronte, V. Marchesi et al., Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumorassociated macrophages Tumour-associated macrophages as treatment targets in oncology, J Clin Invest Nat Rev Clin Oncol, vol.125, pp.3365-3376, 2015.
DOI : 10.1172/jci80006

URL : http://www.jci.org/articles/view/80006/files/pdf

M. Roussel, A. Greenplate, and J. Irish, Dissecting Complex Cellular Systems with High Dimensional Single Cell Mass Cytometry, Experimental Approaches for the Investigation of Innate Immunity, pp.15-26, 2015.
DOI : 10.1142/9789814678735_0002

URL : https://hal.archives-ouvertes.fr/hal-01263110

P. Murray, J. Allen, and S. Biswas, Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines, Immunity, vol.41, issue.1, pp.14-20, 2014.
DOI : 10.1016/j.immuni.2014.06.008

URL : http://doi.org/10.1016/j.immuni.2014.07.009

J. Xue, S. Schmidt, and J. Sander, Transcriptome-Based Network Analysis Reveals a Spectrum Model of Human Macrophage Activation, Immunity, vol.40, issue.2, pp.274-288, 2014.
DOI : 10.1016/j.immuni.2014.01.006

N. Fowler, C. Cheah, and R. Gascoyne, Role of the tumor microenvironment in mature B-cell lymphoid malignancies, Haematologica, vol.101, issue.5, 2016.
DOI : 10.3324/haematol.2015.139493

S. Hasselblom, U. Hansson, and M. Sigurdardottir, Expression of CD68 tumor-associated macrophages in patients with diffuse large B-cell lymphoma and its relation to prognosis, Pathology International, vol.47, issue.8, pp.529-532143, 2008.
DOI : 10.1111/j.1440-1827.2008.02268.x

P. Farinha, H. Masoudi, and B. Skinnider, Analysis of multiple biomarkers shows that lymphoma-associated macrophage (LAM) content is an independent predictor of survival in follicular lymphoma (FL), Blood, vol.106, issue.6, pp.2169-2174, 2005.
DOI : 10.1182/blood-2005-04-1565

G. Epron, P. Ame-thomas, and J. Le-priol, Monocytes and T cells cooperate to favor normal and follicular lymphoma B-cell growth: role of IL-15 and CD40L signaling, Leukemia, vol.91, issue.1, pp.139-148, 2012.
DOI : 10.1016/j.cell.2010.07.044

URL : https://hal.archives-ouvertes.fr/inserm-00869028

R. Amin, F. Mourcin, and F. Uhel, DC-SIGN-expressing macrophages trigger activation of mannosylated IgM B-cell receptor in follicular lymphoma, Blood, vol.126, issue.16, pp.1911-1920, 2015.
DOI : 10.1182/blood-2015-04-640912

URL : https://hal.archives-ouvertes.fr/hal-01187301

D. Canioni, G. Salles, and N. Mounier, High numbers of tumorassociated macrophages have an adverse prognostic value that can be circumvented by rituximab in patients with follicular lymphoma enrolled onto the GELA-GOELAMS FL-2000 trial, J Clin Oncol, vol.2612, pp.440-4468298, 2007.

M. Taskinen, M. Karjalainen-lindsberg, and H. Nyman, A High Tumor-Associated Macrophage Content Predicts Favorable Outcome in Follicular Lymphoma Patients Treated with Rituximab and Cyclophosphamide-Doxorubicin-Vincristine-Prednisone, Clinical Cancer Research, vol.13, issue.19, pp.5784-5789, 2007.
DOI : 10.1158/1078-0432.CCR-07-0778

R. Kridel, L. Xerri, and B. Gelas-dore, The Prognostic Impact of CD163-Positive Macrophages in Follicular Lymphoma: A Study from the BC Cancer Agency and the Lymphoma Study Association, Clinical Cancer Research, vol.21, issue.15, pp.3428-3435, 2015.
DOI : 10.1158/1078-0432.CCR-14-3253

URL : https://hal.archives-ouvertes.fr/hal-01543697

S. Rafiq, J. Butchar, and C. Cheney, Comparative Assessment of Clinically Utilized CD20-Directed Antibodies in Chronic Lymphocytic Leukemia Cells Reveals Divergent NK Cell, Monocyte, and Macrophage Properties, The Journal of Immunology, vol.190, issue.6, pp.2702-2711, 2013.
DOI : 10.4049/jimmunol.1202588

M. Leidi, E. Gotti, and L. Bologna, M2 Macrophages Phagocytose Rituximab-Opsonized Leukemic Targets More Efficiently than M1 Cells In Vitro, The Journal of Immunology, vol.182, issue.7, pp.4415-4422, 2009.
DOI : 10.4049/jimmunol.0713732

URL : http://www.jimmunol.org/content/jimmunol/182/7/4415.full.pdf

D. Aldinucci, M. Celegato, and N. Casagrande, Microenvironmental interactions in classical Hodgkin lymphoma and their role in promoting tumor growth, immune escape and drug resistance, Cancer Letters, vol.380, issue.1, pp.243-252, 2016.
DOI : 10.1016/j.canlet.2015.10.007

P. Greaves, A. Clear, and A. Owen, Defining characteristics of classical Hodgkin lymphoma microenvironment T-helper cells, Blood, vol.122, issue.16, pp.2856-2863, 2013.
DOI : 10.1182/blood-2013-06-508044

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5291299

D. Azambuja, Y. Natkunam, and I. Biasoli, Lack of association of tumor-associated macrophages with clinical outcome in patients with classical Hodgkin's lymphoma, Annals of Oncology, vol.23, issue.3, pp.736-742585, 2012.
DOI : 10.1093/annonc/mdr157

B. Sander, D. De-jong, and A. Rosenwald, The reliability of immunohistochemical analysis of the tumor microenvironment in follicular lymphoma: a validation study from the Lunenburg Lymphoma Biomarker Consortium, Haematologica, vol.99, issue.4, pp.715-725, 2014.
DOI : 10.3324/haematol.2013.095257

C. Engblom, C. Pfirschke, and M. Pittet, The role of myeloid cells in cancer therapies, Nature Reviews Cancer, vol.1, issue.7, pp.447-462, 2016.
DOI : 10.1158/0008-5472.CAN-13-1816

F. Ginhoux, J. Schultze, and P. Murray, New insights into the multidimensional concept of macrophage ontogeny, activation and function, Nature Immunology, vol.332, issue.1, pp.34-40, 2016.
DOI : 10.1126/science.1198704

A. Greenplate, D. Johnson, and M. Roussel, Myelodysplastic Syndrome Revealed by Systems Immunology in a Melanoma Patient Undergoing Anti-PD-1 Therapy, Cancer Immunology Research, vol.4, issue.6, pp.474-480, 2016.
DOI : 10.1158/2326-6066.CIR-15-0213

URL : https://hal.archives-ouvertes.fr/hal-01515573

S. Bendall, E. Simonds, and P. Qiu, Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum, Science, vol.3, issue.5, pp.687-696, 2011.
DOI : 10.1038/nmeth872

M. Spitzer and G. Nolan, Mass Cytometry: Single Cells, Many Features, Cell, vol.165, issue.4, pp.780-791, 2016.
DOI : 10.1016/j.cell.2016.04.019

URL : http://doi.org/10.1016/j.cell.2016.04.019

Y. Saeys, S. Gassen, and B. Lambrecht, Computational flow cytometry: helping to make sense of high-dimensional immunology data, Nature Reviews Immunology, vol.14, issue.7, pp.449-462, 2016.
DOI : 10.1016/j.celrep.2015.12.082

M. Wong, J. Chen, and S. Narayanan, Mapping the Diversity of Follicular Helper T Cells in Human Blood and Tonsils Using High-Dimensional Mass Cytometry Analysis, Cell Reports, vol.11, issue.11, 2015.
DOI : 10.1016/j.celrep.2015.05.022

V. Van-unen, N. Li, and I. Molendijk, Mass Cytometry of the Human Mucosal Immune System Identifies Tissue- and Disease-Associated Immune Subsets, Immunity, vol.44, issue.5, pp.1227-1239, 2016.
DOI : 10.1016/j.immuni.2016.04.014

B. Becher, A. Schlitzer, and J. Chen, High-dimensional analysis of the murine myeloid cell system, Nature Immunology, vol.2, issue.12, pp.1181-1189, 2014.
DOI : 10.1002/cyto.a.20258

N. Sen, G. Mukherjee, and A. Sen, Single-Cell Mass Cytometry Analysis of Human Tonsil T Cell Remodeling by Varicella Zoster Virus, Cell Reports, vol.8, issue.2, pp.633-645, 2014.
DOI : 10.1016/j.celrep.2014.06.024

A. Horowitz, D. Strauss-albee, and M. Leipold, Genetic and Environmental Determinants of Human NK Cell Diversity Revealed by Mass Cytometry, Science Translational Medicine, vol.19, issue.5, 2013.
DOI : 10.1101/gr.085738.108

B. Gaudilliere, G. Fragiadakis, and R. Bruggner, Clinical recovery from surgery correlates with single-cell immune signatures, Science Translational Medicine, vol.4, issue.7, pp.255-131, 2014.
DOI : 10.1016/S1526-5900(03)00716-8

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4334126

G. Mason, K. Lowe, and R. Melchiotti, Phenotypic Complexity of the Human Regulatory T Cell Compartment Revealed by Mass Cytometry, The Journal of Immunology, vol.195, issue.5, pp.2030-2037, 2015.
DOI : 10.4049/jimmunol.1500703

L. Hansmann, L. Blum, and C. Ju, Mass Cytometry Analysis Shows That a Novel Memory Phenotype B Cell Is Expanded in Multiple Myeloma, Cancer Immunology Research, vol.3, issue.6, pp.650-6604871, 2014.
DOI : 10.1158/2326-6066.CIR-14-0236-T

S. Bendall, K. Davis, and E. Amir, Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development, Cell, vol.157, issue.3, pp.714-725, 2014.
DOI : 10.1016/j.cell.2014.04.005

URL : http://doi.org/10.1016/j.cell.2014.04.005

K. Nicholas, A. Greenplate, and D. Flaherty, Multiparameter analysis of stimulated human peripheral blood mononuclear cells: A comparison of mass and fluorescence cytometry, Cytometry Part A, vol.186, issue.3, pp.271-280, 2016.
DOI : 10.4049/jimmunol.1004234

M. Guilliams, C. Dutertre, and C. Scott, Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species, Immunity, vol.45, issue.3, pp.669-684, 2016.
DOI : 10.1016/j.immuni.2016.08.015

URL : https://hal.archives-ouvertes.fr/inserm-01376187

P. See, C. Dutertre, and J. Chen, Mapping the human DC lineage through the integration of high-dimensional techniques, Science, vol.82, issue.6342, 2017.
DOI : 10.1038/ni.2768

S. Chevrier, J. Levine, and V. Zanotelli, An Immune Atlas of Clear Cell Renal Cell Carcinoma, Cell, vol.169, issue.4, pp.736-738, 2017.
DOI : 10.1016/j.cell.2017.04.016

Y. Lavin, S. Kobayashi, and A. Leader, Innate Immune Landscape in Early Lung Adenocarcinoma by Paired Single-Cell Analyses, Cell, vol.169, issue.4, pp.750-757, 2017.
DOI : 10.1016/j.cell.2017.04.014

N. Leelatian, D. Doxie, and A. Greenplate, Single cell analysis of human tissues and solid tumors with mass cytometry, Cytometry Part B: Clinical Cytometry, vol.81, issue.1, pp.68-78, 2017.
DOI : 10.1002/cyto.a.22067

K. Diggins, A. Greenplate, and N. Leelatian, Characterizing cell subsets using marker enrichment modeling, Nature Methods, vol.133, issue.3, pp.275-278, 2017.
DOI : 10.1111/j.1365-2567.2008.02950.x

K. Diggins, P. Ferrell, and J. Irish, Methods for discovery and characterization of cell subsets in high dimensional mass cytometry data, Methods, vol.82, pp.55-63, 2015.
DOI : 10.1016/j.ymeth.2015.05.008

C. Giesen, H. Wang, and D. Schapiro, Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry, Nature Methods, vol.11, issue.4, pp.417-422, 2014.
DOI : 10.1093/bioinformatics/btr095

Q. Chang, O. Ornatsky, and I. Siddiqui, Imaging Mass Cytometry, Cytometry Part A, vol.27, issue.2, pp.160-169, 2017.
DOI : 10.1200/JCO.2008.18.7393

D. Richardson and J. Lichtman, Clarifying Tissue Clearing, Cell, vol.162, issue.2, pp.246-257, 2015.
DOI : 10.1016/j.cell.2015.06.067

URL : http://doi.org/10.1016/j.cell.2015.06.067

J. Xu, J. Escamilla, and S. Mok, CSF1R Signaling Blockade Stanches Tumor-Infiltrating Myeloid Cells and Improves the Efficacy of Radiotherapy in Prostate Cancer, Cancer Research, vol.73, issue.9, pp.2782-2794, 2013.
DOI : 10.1158/0008-5472.CAN-12-3981

H. Qin, B. Lerman, and I. Sakamaki, Generation of a new therapeutic peptide that depletes myeloid-derived suppressor cells in tumor-bearing mice, Nature Medicine, vol.20, issue.6, pp.676-681, 2014.
DOI : 10.1111/j.1365-2567.2012.03566.x

D. Gabrilovich, Myeloid-Derived Suppressor Cells, Cancer Immunology Research, vol.5, issue.1, pp.3-8, 2017.
DOI : 10.1158/2326-6066.CIR-16-0297

E. Suzuki, V. Kapoor, and A. Jassar, Gemcitabine Selectively Eliminates Splenic Gr-1+/CD11b+ Myeloid Suppressor Cells in Tumor-Bearing Animals and Enhances Antitumor Immune Activity, Clinical Cancer Research, vol.11, issue.18, pp.6713-6721, 2005.
DOI : 10.1158/1078-0432.CCR-05-0883

URL : http://clincancerres.aacrjournals.org/content/clincanres/11/18/6713.full.pdf

J. Vincent, G. Mignot, and F. Chalmin, 5-Fluorouracil Selectively Kills Tumor-Associated Myeloid-Derived Suppressor Cells Resulting in Enhanced T Cell-Dependent Antitumor Immunity, Cancer Research, vol.70, issue.8, pp.3052-3061, 2010.
DOI : 10.1158/0008-5472.CAN-09-3690

URL : http://cancerres.aacrjournals.org/content/canres/70/8/3052.full.pdf

I. Sakamaki, L. Kwak, and S. Cha, Lenalidomide enhances the protective effect of a therapeutic vaccine and reverses immune suppression in mice bearing established lymphomas, Leukemia, vol.327, issue.2, pp.329-337, 2014.
DOI : 10.1126/science.1177319