M. Guilliams, F. Ginhoux, C. Jakubzick, S. H. Naik, N. Onai et al., Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny, Nature Reviews Immunology, vol.114, issue.8, pp.571-578, 2014.
DOI : 10.1161/CIRCRESAHA.114.303204

C. Engblom, C. Pfirschke, and M. J. Pittet, The role of myeloid cells in cancer therapies, Nature Reviews Cancer, vol.1, issue.7, pp.447-462, 2016.
DOI : 10.1158/0008-5472.CAN-13-1816

Y. Lavin, A. Mortha, A. Rahman, and M. Merad, Regulation of macrophage development and function in peripheral tissues, Nature Reviews Immunology, vol.510, issue.12, pp.731-744, 2015.
DOI : 10.1038/ni.2967

M. Merad, P. Sathe, J. Helft, J. Miller, and A. Mortha, The Dendritic Cell Lineage: Ontogeny and Function of Dendritic Cells and Their Subsets in the Steady State and the Inflamed Setting, Annual Review of Immunology, vol.31, issue.1, pp.563-604, 2013.
DOI : 10.1146/annurev-immunol-020711-074950

P. R. Taylor, L. Martinez-pomares, M. Stacey, H. Lin, G. D. Brown et al., MACROPHAGE RECEPTORS AND IMMUNE RECOGNITION, Annual Review of Immunology, vol.23, issue.1, pp.901-944, 2005.
DOI : 10.1146/annurev.immunol.23.021704.115816

V. Bronte, S. Brandau, S. Chen, M. P. Colombo, A. B. Frey et al., Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards A slan-based nomenclature for monocytes? Blood, Nature Communications, vol.7, issue.126, pp.2536-2538, 2015.

L. Ziegler-heitbrock, P. Ancuta, S. Crowe, M. Dalod, V. Grau et al., Nomenclature of monocytes and dendritic cells in blood, Blood, vol.116, issue.16, pp.74-80, 2010.
DOI : 10.1182/blood-2010-02-258558

URL : https://hal.archives-ouvertes.fr/hal-00611173

P. J. Murray, J. E. Allen, S. K. Biswas, E. A. Fisher, D. W. Gilroy et al., Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines, Immunity, vol.41, issue.1, pp.14-20, 2014.
DOI : 10.1016/j.immuni.2014.06.008

URL : http://doi.org/10.1016/j.immuni.2014.07.009

J. Cros, N. Cagnard, K. Woollard, N. Patey, S. Zhang et al., Human CD14dim Monocytes Patrol and Sense Nucleic Acids and Viruses via TLR7 and TLR8 Receptors, Immunity, vol.33, issue.3, pp.375-386, 2010.
DOI : 10.1016/j.immuni.2010.08.012

URL : http://doi.org/10.1016/j.immuni.2010.08.012

D. Palma, M. Venneri, M. A. Galli, R. Sergi-sergi, L. Politi et al., Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors, Cancer Cell, vol.8, issue.3, pp.211-226, 2005.
DOI : 10.1016/j.ccr.2005.08.002

F. O. Martinez, S. Gordon, M. Locati, and A. Mantovani, Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression, The Journal of Immunology, vol.177, issue.10, pp.7303-7311, 2006.
DOI : 10.4049/jimmunol.177.10.7303

F. Ginhoux, J. L. Schultze, P. J. Murray, J. Ochando, and S. K. Biswas, New insights into the multidimensional concept of macrophage ontogeny, activation and function, Nature Immunology, vol.332, issue.1, pp.34-40, 2015.
DOI : 10.1126/science.1198704

A. Castro, M. R. Mallmann, L. Labzin, H. Theis, M. Kraut et al., Transcriptome-based network analysis reveals a spectrum model of human macrophage activation, Immunity, vol.40, pp.274-288, 2014.

D. M. Mosser and J. P. Edwards, Exploring the full spectrum of macrophage activation, Nature Reviews Immunology, vol.117, issue.12, pp.958-969, 2008.
DOI : 10.4049/jimmunol.171.7.3550

J. P. Edwards, X. Zhang, K. A. Frauwirth, and D. M. Mosser, Biochemical and functional characterization of three activated macrophage populations, Journal of Leukocyte Biology, vol.80, issue.6, pp.1298-1307, 2006.
DOI : 10.1189/jlb.0406249

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2642590

S. K. Biswas, P. Allavena, and A. Mantovani, Tumor-associated macrophages: functional diversity, clinical significance, and open questions, Seminars in Immunopathology, vol.33, issue.3, pp.585-600, 2013.
DOI : 10.1016/j.it.2011.12.001

A. R. Greenplate, D. B. Johnson, M. Roussel, M. R. Savona, J. A. Sosman et al., Myelodysplastic Syndrome Revealed by Systems Immunology in a Melanoma Patient Undergoing Anti-PD-1 Therapy, Cancer Immunology Research, vol.4, issue.6, pp.474-480, 2016.
DOI : 10.1158/2326-6066.CIR-15-0213

URL : https://hal.archives-ouvertes.fr/hal-01515573

S. C. Bendall, E. F. Simonds, P. Qiu, E. A. Amir, P. O. Krutzik et al., Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum, Science, vol.3, issue.5, pp.687-696, 2011.
DOI : 10.1038/nmeth872

M. H. Spitzer and G. P. Nolan, Mass Cytometry: Single Cells, Many Features, Cell, vol.165, issue.4, pp.780-791, 2016.
DOI : 10.1016/j.cell.2016.04.019

Y. Saeys, S. V. Gassen, and B. N. Lambrecht, Computational flow cytometry: helping to make sense of high-dimensional immunology data, Nature Reviews Immunology, vol.14, issue.7, pp.449-462, 2016.
DOI : 10.1016/j.celrep.2015.12.082

K. E. Diggins, A. R. Greenplate, N. Leelatian, C. E. Wogsland, and J. M. Irish, Characterizing cell subsets using marker enrichment modeling, Nature Methods, vol.133, issue.3, pp.275-278, 2017.
DOI : 10.1111/j.1365-2567.2008.02950.x

E. D. Amir, K. L. Davis, M. D. Tadmor, E. F. Simonds, J. H. Levine et al., viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia, Nature Biotechnology, vol.10, issue.6, pp.545-552, 2013.
DOI : 10.1088/1742-5468/2008/10/P10008

P. Qiu, E. F. Simonds, S. C. Bendall, K. D. Gibbs, R. V. Bruggner et al., Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE, Nature Biotechnology, vol.49, issue.10, pp.886-891, 2011.
DOI : 10.1371/journal.pcbi.1001123

M. T. Wong, J. Chen, S. Narayanan, W. Lin, R. Anicete et al., Mapping the Diversity of Follicular Helper T Cells in Human Blood and Tonsils Using High-Dimensional Mass Cytometry Analysis, Cell Reports, vol.11, issue.11, pp.1822-1833, 2015.
DOI : 10.1016/j.celrep.2015.05.022

V. Van-unen, N. Li, I. Molendijk, M. Temurhan, T. Höllt et al., Mass Cytometry of the Human Mucosal Immune System Identifies Tissue- and Disease-Associated Immune Subsets, Immunity, vol.44, issue.5, pp.1227-1239, 2016.
DOI : 10.1016/j.immuni.2016.04.014

B. Becher, A. Schlitzer, J. Chen, F. Mair, H. R. Sumatoh et al., High-dimensional analysis of the murine myeloid cell system, Nature Immunology, vol.2, issue.12, pp.1181-1189, 2014.
DOI : 10.1002/cyto.a.20258

N. Sen, G. Mukherjee, A. Sen, S. C. Bendall, P. Sung et al., Single-Cell Mass Cytometry Analysis of Human Tonsil T Cell Remodeling by Varicella Zoster Virus, Cell Reports, vol.8, issue.2, pp.633-645, 2014.
DOI : 10.1016/j.celrep.2014.06.024

A. Horowitz, D. M. Strauss-albee, M. Leipold, J. Kubo, N. Nemat-gorgani et al., Genetic and Environmental Determinants of Human NK Cell Diversity Revealed by Mass Cytometry, Science Translational Medicine, vol.19, issue.5, pp.208-145, 2013.
DOI : 10.1101/gr.085738.108

B. Gaudilliere, G. K. Fragiadakis, R. V. Bruggner, M. Nicolau, R. Finck et al., Clinical recovery from surgery correlates with single-cell immune signatures, Science Translational Medicine, vol.4, issue.7, pp.255-131, 2014.
DOI : 10.1016/S1526-5900(03)00716-8

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4334126

G. M. Mason, K. Lowe, R. Melchiotti, R. Ellis, E. De-rinaldis et al., Phenotypic Complexity of the Human Regulatory T Cell Compartment Revealed by Mass Cytometry, Phenotypic Complexity of the Human Regulatory T Cell Compartment Revealed by Mass Cytometry, pp.2030-2037, 2015.
DOI : 10.4049/jimmunol.1500703

L. Hansmann, L. Blum, C. Ju, M. Liedtke, W. H. Robinson et al., Mass Cytometry Analysis Shows That a Novel Memory Phenotype B Cell Is Expanded in Multiple Myeloma, Cancer Immunology Research, vol.3, issue.6, pp.650-660, 2015.
DOI : 10.1158/2326-6066.CIR-14-0236-T

D. M. Strauss-albee, A. Horowitz, P. Parham, and C. A. Blish, Coordinated Regulation of NK Receptor Expression in the Maturing Human Immune System, The Journal of Immunology, vol.193, issue.10, pp.4871-4879, 2014.
DOI : 10.4049/jimmunol.1401821

S. C. Bendall, K. L. Davis, E. D. Amir, M. D. Tadmor, E. F. Simonds et al., Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development, Cell, vol.157, issue.3, pp.714-725, 2014.
DOI : 10.1016/j.cell.2014.04.005

K. J. Nicholas, A. R. Greenplate, D. K. Flaherty, B. K. Matlock, J. S. Juan et al., Multiparameter analysis of stimulated human peripheral blood mononuclear cells: A comparison of mass and fluorescence cytometry, Cytometry Part a : the Journal of the International Society for Analytical Cytology, pp.271-280, 2016.
DOI : 10.4049/jimmunol.1004234

M. Guilliams, C. Dutertre, C. L. Scott, N. Mcgovern, D. Sichien et al., Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species, (2016) Unsupervised High- Dimensional Analysis Aligns Dendritic Cells across Tissues and Species, pp.669-684
DOI : 10.1016/j.immuni.2016.08.015

URL : https://hal.archives-ouvertes.fr/inserm-01376187

J. M. Irish, Beyond the age of cellular discovery, Nature Immunology, vol.15, issue.12, pp.1095-1097, 2014.
DOI : 10.1016/j.cell.2014.04.005

I. Marigo, E. Bosio, S. Solito, C. Mesa, A. Fernández et al., Tumor-Induced Tolerance and Immune Suppression Depend on the C/EBP?? Transcription Factor, Immunity, vol.32, issue.6, pp.790-802, 2010.
DOI : 10.1016/j.immuni.2010.05.010

M. G. Lechner, D. J. Liebertz, and A. L. Epstein, Characterization of Cytokine-Induced Myeloid-Derived Suppressor Cells from Normal Human Peripheral Blood Mononuclear Cells, The Journal of Immunology, vol.185, issue.4, pp.2273-2284, 2010.
DOI : 10.4049/jimmunol.1000901

H. G. Fienberg, E. F. Simonds, W. J. Fantl, G. P. Nolan, and B. Bodenmiller, A platinum-based covalent viability reagent for single-cell mass cytometry, Cytometry Part A, vol.58, issue.6, pp.467-475, 2012.
DOI : 10.1002/cyto.a.20018

URL : http://onlinelibrary.wiley.com/doi/10.1002/cyto.a.22067/pdf

R. Finck, E. F. Simonds, A. Jager, S. Krishnaswamy, K. Sachs et al., Normalization of mass cytometry data with bead standards, Cytometry Part A, vol.30, issue.5, pp.483-494, 2013.
DOI : 10.1038/nbt.2317

K. E. Diggins, P. B. Ferrell, and J. M. Irish, Methods for discovery and characterization of cell subsets in high dimensional mass cytometry data, Methods, vol.82, pp.55-63, 2015.
DOI : 10.1016/j.ymeth.2015.05.008

N. Kotecha, P. O. Krutzik, and J. M. Irish, Web-Based Analysis and Publication of Flow Cytometry Experiments, Current Protocols in Cytometry, vol.308, p.100708, 2010.
DOI : 10.1002/0471142956.cy1017s53

T. P. Hofer, A. M. Zawada, M. Frankenberger, K. Skokann, A. A. Satzl et al., slan-defined subsets of CD16-positive monocytes: impact of granulomatous inflammation and M-CSF receptor mutation, Blood, vol.126, issue.24, pp.2601-2610, 2015.
DOI : 10.1182/blood-2015-06-651331

M. Sade-feldman, J. Kanterman, Y. Klieger, E. Ish-shalom, M. Olga et al., Clinical Significance of Circulating CD33+CD11b+HLA-DR- Myeloid Cells in Patients with Stage IV Melanoma Treated with Ipilimumab, Clinical Cancer Research, vol.22, issue.23, pp.5661-5672, 2016.
DOI : 10.1158/1078-0432.CCR-15-3104

B. M. Rudolph, C. Loquai, A. Gerwe, N. Bacher, K. Steinbrink et al., myeloid-derived suppressor cells are an early event in melanoma patients, Experimental Dermatology, vol.122, issue.3, pp.202-204, 2014.
DOI : 10.1182/blood-2012-12-474478

I. Chevolet, R. Speeckaert, M. Schreuer, B. Neyns, O. Krysko et al., Clinical significance of plasmacytoid dendritic cells and myeloid-derived suppressor cells in melanoma, Journal of Translational Medicine, vol.13, issue.1, 2015.
DOI : 10.1158/1078-0432.CCR-04-0193

B. Weide, A. Martens, H. Zelba, C. Stutz, E. Derhovanessian et al., Myeloid-Derived Suppressor Cells Predict Survival of Patients with Advanced Melanoma: Comparison with Regulatory T Cells and NY-ESO-1- or Melan-A-Specific T Cells, Clinical Cancer Research, vol.20, issue.6, pp.1601-1609, 2014.
DOI : 10.1158/1078-0432.CCR-13-2508

Y. Mao, I. Poschke, E. Wennerberg, Y. Pico-de-coana, S. Egyhazi-brage et al., Cells Acquire a Myeloid-Derived Suppressor Cell Phenotype through COX-2???Dependent Mechanisms, Cancer Research, vol.73, issue.13, pp.3877-3887, 2013.
DOI : 10.1158/0008-5472.CAN-12-4115

M. Mingueneau, S. Boudaoud, S. Haskett, T. L. Reynolds, G. Nocturne et al., Cytometry by time-of-flight immunophenotyping identifies a blood Sj??gren's signature correlating with disease activity and glandular inflammation, Journal of Allergy and Clinical Immunology, vol.137, issue.6, pp.1809-1821, 2016.
DOI : 10.1016/j.jaci.2016.01.024

B. Gaudilliere, E. A. Ganio, M. Tingle, H. L. Lancero, G. K. Fragiadakis et al., Implementing Mass Cytometry at the Bedside to Study the Immunological Basis of Human Diseases: Distinctive Immune Features in Patients with a History of Term or Preterm Birth, Cytometry Part a : the Journal of the International Society for Analytical Cytology, pp.817-829, 2015.
DOI : 10.1016/j.ajpath.2011.04.024

G. K. Behbehani, N. Samusik, Z. B. Bjornson, W. J. Fantl, B. C. Medeiros et al., Mass Cytometric Functional Profiling of Acute Myeloid Leukemia Defines Cell-Cycle and Immunophenotypic Properties That Correlate with Known Responses to Therapy, Cancer Discovery, vol.5, issue.9, pp.988-1003, 2015.
DOI : 10.1158/2159-8290.CD-15-0298

J. H. Levine, E. F. Simonds, S. C. Bendall, K. L. Davis, E. D. Amir et al., Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis, Cell, vol.162, issue.1, pp.184-197, 2015.
DOI : 10.1016/j.cell.2015.05.047

L. Han, P. Qiu, Z. Zeng, J. L. Jorgensen, D. H. Mak et al., Singlecell mass cytometry reveals intracellular survival/proliferative signaling in FLT3-ITD-mutated AML stem/progenitor cells, Cytometry Part a : the Journal of the International Society for Analytical Cytology, pp.346-356, 2015.
DOI : 10.1002/cyto.a.22628

URL : http://onlinelibrary.wiley.com/doi/10.1002/cyto.a.22628/pdf

S. Baumgart, A. Peddinghaus, U. Schulte-wrede, H. E. Mei, and A. Grützkau, OMIP-034: Comprehensive immune phenotyping of human peripheral leukocytes by mass cytometry for monitoring immunomodulatory therapies, Cytometry Part A, vol.85, issue.1, 2016.
DOI : 10.1002/cyto.a.22580

M. H. Spitzer, P. F. Gherardini, G. K. Fragiadakis, N. Bhattacharya, R. T. Yuan et al., An interactive reference framework for modeling a dynamic immune system, Science, vol.9, issue.6191, pp.1259425-1259425, 2015.
DOI : 10.1371/journal.pone.0098679

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537647

Y. Son, S. Egawa, T. Tatsumi, R. E. Redlinger, P. Kalinski et al., A novel bulk-culture method for generating mature dendritic cells from mouse bone marrow cells, Journal of Immunological Methods, vol.262, issue.1-2, pp.145-157, 2002.
DOI : 10.1016/S0022-1759(02)00013-3

J. Helft, J. Böttcher, P. Chakravarty, S. Zelenay, J. Huotari et al., GM-CSF Mouse Bone Marrow Cultures Comprise a Heterogeneous Population of CD11c+MHCII+ Macrophages and Dendritic Cells, Immunity, vol.42, issue.6, pp.1197-1211, 2015.
DOI : 10.1016/j.immuni.2015.05.018

M. D. Van-de-garde, F. O. Martinez, B. N. Melgert, M. N. Hylkema, R. E. Jonkers et al., Chronic Exposure to Glucocorticoids Shapes Gene Expression and Modulates Innate and Adaptive Activation Pathways in Macrophages with Distinct Changes in Leukocyte Attraction, The Journal of Immunology, vol.192, issue.3, pp.1196-1208, 2014.
DOI : 10.4049/jimmunol.1302138

F. Zhao, B. Hoechst, A. Duffy, J. Gamrekelashvili, S. Fioravanti et al., S100A9 a new marker for monocytic human myeloid-derived suppressor cells, Immunology, vol.181, issue.2, pp.176-183, 2012.
DOI : 10.4049/jimmunol.181.7.4666

P. Burnette, S. Van-bijnen, H. Dolstra, J. Cannon, J. Youn et al., Induction of myelodysplasia by myeloid-derived suppressor cells, The Journal of Clinical Investigation, vol.123, pp.4595-4611, 2013.

S. Gordon, A. Plüddemann, and F. Martinez-estrada, Macrophage heterogeneity in tissues: phenotypic diversity and functions, Immunological Reviews, vol.141, issue.Pt 1, pp.36-55, 2014.
DOI : 10.1016/j.cell.2010.03.015