S. Andres, M. Santoro, A. Mah, J. Keku, A. Bortvedt et al., Deletion of intestinal epithelial insulin receptor attenuates high-fat diet-induced elevations in cholesterol and stem, enteroendocrine, and Paneth cell mRNAs, American Journal of Physiology - Gastrointestinal and Liver Physiology, vol.308, issue.2, pp.100-111, 2015.
DOI : 10.1152/ajpgi.00287.2014

B. Henrissat and D. Raoult, A Metagenomic Investigation of the Duodenal Microbiota Reveals Links 517 with Obesity, PloS one, vol.10, issue.3, p.137784, 2015.

J. Bates, J. Akerlund, E. Mittge, and K. Guillemin, Intestinal alkaline phosphatase detoxifies 519 lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota, Cell 520 host & microbe, pp.371-382, 2007.

W. Beatty, S. Meresse, P. Gounon, J. Davoust, J. Mounier et al., 522 Trafficking of Shigella lipopolysaccharide in polarized intestinal epithelial cells. The Journal of cell 523, biology, vol.145, issue.5, pp.689-698, 1999.

A. Donadille, H. Vidal, and M. Michalski, Increasing fat content from 20 to 45 wt% in a complex diet 526 induces lower endotoxemia in parallel with an increased number of intestinal goblet cells in mice, Nutrition research, vol.527, issue.6, pp.346-356, 2015.

J. Bodennec, O. Cousin, H. Vidal, F. Laugerette, and M. Michalski, Pasture v. standard dairy cream in 530 high-fat diet-fed mice: improved metabolic outcomes and stronger intestinal barrier. The British 531, journal of nutrition, vol.112, pp.520-535

C. Bevins and N. Salzman, Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis, Nature Reviews Microbiology, vol.272, issue.5, pp.356-368, 2011.
DOI : 10.1074/jbc.272.38.23729

S. Bischoff, G. Barbara, W. Buurman, T. Ockhuizen, J. Schulzke et al., Intestinal permeability ??? a new target for disease prevention and therapy, BMC Gastroenterology, vol.4, issue.Suppl 1, pp.189-2014
DOI : 10.3920/BM2012.0033

S. Bischoff, G. Barbara, W. Buurman, T. Ockhuizen, J. Schulzke et al., Intestinal permeability ??? a new target for disease prevention and therapy, BMC Gastroenterology, vol.4, issue.Suppl 1, pp.189-199, 2014.
DOI : 10.3920/BM2012.0033

N. Boutagy, R. Mcmillan, M. Frisard, and M. Hulver, Metabolic endotoxemia with obesity: Is it real and is it relevant?, Biochimie, vol.124, issue.542, pp.11-20, 2016.
DOI : 10.1016/j.biochi.2015.06.020

P. Brun, I. Castagliuolo, D. Leo, V. Buda, A. Pinzani et al., Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis, AJP: Gastrointestinal and Liver Physiology, vol.292, issue.2, pp.518-525, 2007.
DOI : 10.1152/ajpgi.00024.2006

L. Casteilla, N. Delzenne, M. Alessi, and R. Burcelin, Metabolic endotoxemia initiates obesity and 549 insulin resistance, Diabetes, vol.56, issue.550, pp.1761-1772, 2007.

P. Cani, R. Bibiloni, C. Knauf, A. Waget, A. Neyrinck et al., Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet-Induced Obesity and Diabetes in Mice, Diabetes, vol.57, issue.6, pp.1470-1481, 2008.
DOI : 10.2337/db07-1403

URL : https://hal.archives-ouvertes.fr/inserm-00410066

M. Caroff and D. Karibian, Structure of bacterial lipopolysaccharides, Carbohydrate Research, vol.338, issue.23, pp.2431-2447, 2003.
DOI : 10.1016/j.carres.2003.07.010

M. Cody, Effect of inflammatory and antiinflammatory stimuli on acyloxyacyl hydrolase gene expression and enzymatic activity in murine macrophages, Journal of Endotoxin Research, vol.64, issue.5, pp.371-379, 1997.
DOI : 10.1073/pnas.90.20.9730

A. Harte, S. Kumar, L. Serre, C. Ellis, C. Lee et al., American journal of physiology Endocrinology and 561 metabolism Propensity to 563 high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut 564 inflammation Dietary fat 567 intake promotes the development of hepatic steatosis independently from excess caloric 568 consumption in a murine model, Lipopolysaccharide activates an innate immune system response in human 560 adipose tissue in obesity and type 2 diabetes 570 M, and van der Meer R. The role of the small intestine in the development of dietary fat-induced 571 obesity and insulin resistance in C57BL/6J mice, pp.740-747, 2007.

S. Ding, M. Chi, B. Scull, R. Rigby, N. Schwerbrock et al., High-Fat Diet: Bacteria Interactions Promote Intestinal Inflammation Which Precedes and Correlates with Obesity and Insulin Resistance in Mouse, PLoS ONE, vol.10, issue.10, pp.12191-575, 2010.
DOI : 10.1371/journal.pone.0012191.t005

C. Erridge, E. Bennett-guerrero, I. Poxton, L. Geurts, C. R. Van-hul et al., Structure and function of lipopolysaccharides. 576 Microbes and infection, Institut Pasteur, vol.4, pp.837-851, 2002.

F. Pierard, J. Castel, L. Bindels, H. Plovier, S. Robine et al., Intestinal epithelial MyD88 is a sensor switching host 580 metabolism towards obesity according to nutritional status, Nature communications, vol.5, issue.5648, p.582, 2014.

J. Schrenzel, P. Francois, and P. Cani, Microbiome of prebiotic-treated mice reveals novel targets 583 involved in host response during obesity, The ISME journal, vol.8, issue.584, pp.2116-2130, 2014.

P. Gerard, Gut microbiota and obesity, Cellular and Molecular Life Sciences, vol.143, issue.4, pp.147-585, 2016.
DOI : 10.1053/j.gastro.2012.06.031

URL : https://hal.archives-ouvertes.fr/hal-01532527

M. Guerville and G. Boudry, Gastro-intestinal and hepatic mechanisms limiting the entry and 587 dissemination of lipopolysaccharide into the systemic circulation American journal of physiology 588 Gastrointestinal and liver physiology, p.590

B. Fagerberg and C. B. , Intestinal permeability is associated with visceral adiposity in healthy 591 women, Obesity, vol.19, pp.2280-2282, 2011.

M. Hamilton, G. Boudry, D. Lemay, and R. He, Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent, American Journal of Physiology - Gastrointestinal and Liver Physiology, vol.308, issue.10, pp.840-851, 2015.
DOI : 10.1152/ajpgi.00029.2015

URL : https://hal.archives-ouvertes.fr/hal-01409505

G. Hotamisligil, Inflammation and metabolic disorders, Nature, vol.314, issue.7121, pp.860-867, 2006.
DOI : 10.1074/jbc.M411860200

S. Howe, D. Lickteig, K. Plunkett, J. Ryerse, and V. Konjufca, The Uptake of Soluble and Particulate Antigens by Epithelial Cells in the Mouse Small Intestine, PLoS ONE, vol.61, issue.1, pp.86656-86686, 2014.
DOI : 10.1371/journal.pone.0086656.s010

P. Modulates and G. Microbiota, Improves Gut Barrier Function, and Attenuates Metabolic 600 Endotoxemia in Rats with Diet-Induced Obesity, Nutrients Johnson AM, vol.8, issue.601, p.31, 2016.

J. Olefsky, High fat diet causes depletion of intestinal eosinophils associated with intestinal 603 permeability, PloS one, vol.10, issue.604, pp.122195-122227, 2015.

A. Johnson, J. Milner, and L. Makowski, The inflammation highway: metabolism accelerates inflammatory traffic in obesity, Immunological Reviews, vol.356, issue.Suppl 7, pp.218-238, 2012.
DOI : 10.1056/NEJMoa065213

R. Hodin, Intestinal alkaline phosphatase prevents metabolic syndrome in mice, Proceedings of the 610 National Academy of Sciences of the United States of America, pp.7003-7008, 2013.

K. Kallio, K. Hatonen, M. Lehto, V. Salomaa, S. Mannisto et al., nutrition, and cardiometabolic disorders, Acta diabetologica, vol.52, issue.613, pp.612-395, 2015.
DOI : 10.1007/s00592-014-0662-3

K. Kim, W. Gu, I. Lee, E. Joh, and D. Kim, High Fat Diet-Induced Gut Microbiota Exacerbates Inflammation and Obesity in Mice via the TLR4 Signaling Pathway, PLoS ONE, vol.7, issue.10, pp.47713-615, 2012.
DOI : 10.1371/journal.pone.0047713.s007

A. Bado, X. He, I. Smirnova, and M. Liu, Luminal leptin activates mucin-secreting goblet cells in the large bowel American journal of 693 physiology Gastrointestinal and liver physiology, pp.805-812, 2006.

C. Galanos, M. Freudenberg, P. Ricciardi-castagnoli, B. Layton, B. Beutler et al., Defective LPS signaling 696 in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene Studies of mucus in mouse stomach, small intestine, and colon. II. Gastrointestinal 699 mucus proteome reveals Muc2 and Muc5ac accompanied by a set of core proteins, American journal 700 of physiology Gastrointestinal and liver physiology, pp.2085-2088, 1998.

R. Schumann and E. Latz, Lipopolysaccharide-Binding Protein, Chemical immunology, vol.74, issue.703, pp.42-702, 2000.
DOI : 10.1159/000058760

Z. Sefcikova, T. Hajek, L. Lenhardt, L. Racek, and S. Mozes, Different functional responsibility of 704 the small intestine to high-fat/high-energy diet determined the expression of obesity-prone and 705 obesity-resistant phenotypes in rats, Academia Scientiarum Bohemoslovaca, vol.706, issue.707, pp.467-474, 2008.

T. Suzuki and H. Hara, Dietary fat and bile juice, but not obesity, are responsible for the 711 increase in small intestinal permeability induced through the suppression of tight junction protein 712 expression in LETO and OLETF rats. Nutrition & metabolism 7: 19, 2010. 713 67. Tuin A, Huizinga-Van der Vlag A, van Loenen-Weemaes AM, Meijer DK, and Poelstra K. On 714 the role and fate of LPS-dephosphorylating activity in the rat liver, American journal of physiology 715 Gastrointestinal and liver physiology, vol.290, pp.377-385, 2006.

L. Hooper, The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and 718 host in the intestine, Science, vol.334, pp.255-258, 2011.

S. Valdivia, A. Patrone, M. Reynaldo, and M. Perello, Acute high fat diet consumption activates 720 the mesolimbic circuit and requires orexin signaling in a mouse model, p.722

J. Dekker, R. Van-der-meer, J. Wells, and I. Bovee-oudenhoven, Intestinally secreted C-type lectin 723

D. Zanger, R. Wisse, and E. , Reg3b attenuates salmonellosis but not listeriosis in mice Cellular and subcellular distribution of injected 726 lipopolysaccharide in rat liver and its inactivation by bile salts, Infection and immunity Journal of hepatology, vol.80, issue.728, pp.1115-1120, 1988.

F. Verdam, S. Fuentes, C. De-jonge, E. Zoetendal, R. Erbil et al., Human intestinal microbiota composition is associated with local and systemic inflammation in obesity, Obesity, vol.225, issue.12, pp.607-615, 2013.
DOI : 10.1002/path.2917

L. Zhao, M. Obin, and J. Shen, Modulation of gut microbiota during probiotic-mediated attenuation of 740 metabolic syndrome in high fat diet-fed mice, The ISME journal, vol.9, pp.1-15, 2015.

M. Wiedemann, S. Wueest, F. Item, E. Schoenle, and K. D. , Adipose tissue inflammation contributes to short-term high-fat diet-induced hepatic insulin resistance, AJP: Endocrinology and Metabolism, vol.305, issue.3, pp.388-395, 2013.
DOI : 10.1152/ajpendo.00179.2013

I. Steffensen, S. Gray, A. Tups, R. Seeley, P. Rushing et al., The development of diet-induced obesity and glucose 746 intolerance in C57BL/6 mice on a high-fat diet consists of distinct phases A controlled high-fat diet induces 748 an obese syndrome in rats, The Journal of nutrition, vol.133, issue.749, pp.1081-1087, 2003.

X. Zhou, D. Han, R. Xu, S. Li, H. Wu et al., A Model of Metabolic Syndrome and Related Diseases with Intestinal Endotoxemia in Rats Fed a High Fat and High Sucrose Diet, PLoS ONE, vol.113, issue.12, p.115148, 2014.
DOI : 10.1371/journal.pone.0115148.t003