C. Hetz, E. Chevet, and S. Oakes, Proteostasis control by the unfolded protein response, Nature Cell Biology, vol.276, issue.7, pp.829-838, 2015.
DOI : 10.1038/nrd3976

URL : https://hal.archives-ouvertes.fr/hal-01175531

E. Chevet, C. Hetz, and A. Samali, Endoplasmic Reticulum Stress-Activated Cell Reprogramming in Oncogenesis, Cancer Discovery, vol.5, issue.6, pp.586-597, 2015.
DOI : 10.1158/2159-8290.CD-14-1490

URL : https://hal.archives-ouvertes.fr/hal-01152845

N. Dejeans, K. Barroso, M. Fernandez-zapico, A. Samali, and E. Chevet, Novel roles of the unfolded protein response in the control of tumor development and aggressiveness, Seminars in Cancer Biology, vol.33, pp.67-73, 2015.
DOI : 10.1016/j.semcancer.2015.04.007

URL : https://hal.archives-ouvertes.fr/hal-01150385

W. Balch, R. Morimoto, A. Dillin, and J. Kelly, Adapting Proteostasis for Disease Intervention, Science, vol.43, issue.5865, pp.916-919, 2008.
DOI : 10.1038/nature05904

U. Schubert, L. Anton, J. Gibbs, C. Norbury, J. Yewdell et al., Rapid degradation of a large fraction of newly synthesized proteins by proteasomes, Nature, vol.59, issue.6779, pp.770-774, 2000.
DOI : 10.1146/annurev.iy.12.040194.001145

M. Mann and L. Hendershot, UPR activation alters chemosensitivity of tumor cells, Cancer Biology & Therapy, vol.5, issue.7, pp.736-740, 2006.
DOI : 10.4161/cbt.5.7.2969

URL : http://www.tandfonline.com/doi/pdf/10.4161/cbt.5.7.2969?needAccess=true

H. Urra, E. Dufey, F. Lisbona, D. Rojas-rivera, and C. Hetz, When ER stress reaches a dead end, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1833, issue.12, pp.3507-3517, 2013.
DOI : 10.1016/j.bbamcr.2013.07.024

URL : https://doi.org/10.1016/j.bbamcr.2013.07.024

Y. Ma and L. Hendershot, The role of the unfolded protein response in tumour development: friend or foe?, Nature Reviews Cancer, vol.45, issue.12, pp.966-977, 2004.
DOI : 10.1016/j.neuint.2004.01.003

J. Cubillos-ruiz, S. Bettigole, and L. Glimcher, Tumorigenic and Immunosuppressive Effects of Endoplasmic Reticulum Stress in Cancer, Cell, vol.168, issue.4, pp.692-706, 2017.
DOI : 10.1016/j.cell.2016.12.004

URL : http://europepmc.org/articles/pmc5333759?pdf=render

S. Wang and R. Kaufman, How does protein misfolding in the endoplasmic reticulum affect lipid metabolism in the liver?, Current Opinion in Lipidology, vol.25, issue.2, pp.125-132, 2014.
DOI : 10.1097/MOL.0000000000000056

T. Tsuruo, M. Naito, A. Tomida, N. Fujita, T. Mashima et al., Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal, Cancer Science, vol.62, issue.1, pp.15-21, 2003.
DOI : 10.1002/ijc.10166

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1349-7006.2003.tb01345.x/pdf

K. Haze, H. Yoshida, H. Yanagi, T. Yura, and K. Mori, Mammalian Transcription Factor ATF6 Is Synthesized as a Transmembrane Protein and Activated by Proteolysis in Response to Endoplasmic Reticulum Stress, Molecular Biology of the Cell, vol.17, issue.11, pp.3787-3799, 1999.
DOI : 10.1128/MCB.17.9.4957

URL : http://www.molbiolcell.org/content/10/11/3787.full.pdf

W. Tirasophon, A. Welihinda, and R. Kaufman, A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian??cells, Genes & Development, vol.12, issue.12, pp.1812-1824, 1998.
DOI : 10.1101/gad.12.12.1812

H. Harding, Y. Zhang, and R. D. , Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase, Nature, vol.18, issue.128, pp.271-274, 1999.
DOI : 10.1128/MCB.18.12.7499

M. Carrara, F. Prischi, P. Nowak, M. Kopp, and M. Ali, Author response, eLife, vol.103, p.3522, 2015.
DOI : 10.7554/eLife.03522.014

, ER stress and cancer chemotherapy resistance T Avril et al BiP and ER stress transducers in the unfolded-protein response, Nat Cell Biol, vol.2, pp.326-332, 2000.

A. Higa, S. Taouji, S. Lhomond, D. Jensen, M. Fernandez-zapico et al., Endoplasmic Reticulum Stress-Activated Transcription Factor ATF6?? Requires the Disulfide Isomerase PDIA5 To Modulate Chemoresistance, Molecular and Cellular Biology, vol.34, issue.10, pp.1839-1849, 2014.
DOI : 10.1128/MCB.01484-13

S. Nadanaka, T. Okada, H. Yoshida, and K. Mori, Role of Disulfide Bridges Formed in the Luminal Domain of ATF6 in Sensing Endoplasmic Reticulum Stress, Molecular and Cellular Biology, vol.27, issue.3, pp.1027-1043, 2007.
DOI : 10.1128/MCB.00408-06

J. Shen, X. Chen, L. Hendershot, and R. Prywes, ER Stress Regulation of ATF6 Localization by Dissociation of BiP/GRP78 Binding and Unmasking of Golgi Localization Signals, Developmental Cell, vol.3, issue.1, pp.99-111, 2002.
DOI : 10.1016/S1534-5807(02)00203-4

Y. Lu, F. Liang, and X. Wang, A Synthetic Biology Approach Identifies the Mammalian UPR RNA Ligase RtcB, Molecular Cell, vol.55, issue.5, pp.758-770, 2014.
DOI : 10.1016/j.molcel.2014.06.032

, 21

K. Yamamoto, T. Sato, T. Matsui, M. Sato, T. Okada et al., Transcriptional Induction of Mammalian ER Quality Control Proteins Is Mediated by Single or Combined Action of ATF6?? and XBP1, Developmental Cell, vol.13, issue.3, pp.365-376, 2007.
DOI : 10.1016/j.devcel.2007.07.018

H. Yoshida, T. Matsui, A. Yamamoto, T. Okada, and K. Mori, XBP1 mRNA Is Induced by ATF6 and Spliced by IRE1 in Response to ER Stress to Produce a Highly Active Transcription Factor, Cell, vol.107, issue.7, pp.881-891, 2001.
DOI : 10.1016/S0092-8674(01)00611-0

J. Jurkin, T. Henkel, A. Nielsen, M. Minnich, J. Popow et al., mRNA and controls antibody secretion in plasma cells, The EMBO Journal, vol.33, issue.24, pp.2922-2936, 2014.
DOI : 10.15252/embj.201490332

K. Lee, W. Tirasophon, X. Shen, M. Michalak, R. Prywes et al., IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response, Genes & Development, vol.16, issue.4, pp.452-466, 2002.
DOI : 10.1101/gad.964702

URL : http://genesdev.cshlp.org/content/16/4/452.full.pdf

M. Calfon, H. Zeng, F. Urano, J. Till, S. Hubbard et al., Erratum: IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA, Nature, vol.99, issue.6867, pp.92-96, 2002.
DOI : 10.1016/S0092-8674(00)81667-0

C. Hetz, F. Martinon, D. Rodriguez, and L. Glimcher, The Unfolded Protein Response: Integrating Stress Signals Through the Stress Sensor IRE1??, Physiological Reviews, vol.460, issue.4, pp.1219-1243, 2011.
DOI : 10.1101/gad.12.7.982

URL : http://physrev.physiology.org/content/physrev/91/4/1219.full.pdf

D. Acosta-alvear, Y. Zhou, A. Blais, M. Tsikitis, N. Lents et al., XBP1 Controls Diverse Cell Type- and Condition-Specific Transcriptional Regulatory Networks, Molecular Cell, vol.27, issue.1, pp.53-66, 2007.
DOI : 10.1016/j.molcel.2007.06.011

URL : https://doi.org/10.1016/j.molcel.2007.06.011

J. Hollien and J. Weissman, Decay of Endoplasmic Reticulum-Localized mRNAs During the Unfolded Protein Response, Science, vol.313, issue.5783, pp.104-107, 2006.
DOI : 10.1093/nar/gki046

J. Hollien, J. Lin, H. Li, N. Stevens, P. Walter et al., Regulated Ire1-dependent decay of messenger RNAs in mammalian cells, The Journal of Cell Biology, vol.186, issue.3, pp.323-331, 2009.
DOI : 10.1128/MCB.22.11.3864-3874.2002

URL : http://jcb.rupress.org/content/jcb/186/3/323.full.pdf

D. Han, A. Lerner, V. Walle, L. Upton, J. Xu et al., IRE1?? Kinase Activation Modes Control Alternate Endoribonuclease Outputs to Determine Divergent Cell Fates, Cell, vol.138, issue.3, pp.562-575, 2009.
DOI : 10.1016/j.cell.2009.07.017

T. Iwawaki, A. Hosoda, T. Okuda, Y. Kamigori, C. Nomura-furuwatari et al., Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress, Nature Cell Biology, vol.108, issue.2, pp.158-164, 2001.
DOI : 10.1016/0378-1119(91)90434-D

A. Lerner, J. Upton, P. Praveen, R. Ghosh, Y. Nakagawa et al., IRE1?? Induces Thioredoxin-Interacting Protein to Activate the NLRP3 Inflammasome and Promote Programmed Cell Death under Irremediable ER Stress, Cell Metabolism, vol.16, issue.2, pp.250-264, 2012.
DOI : 10.1016/j.cmet.2012.07.007

URL : https://doi.org/10.1016/j.cmet.2012.07.007

J. Upton, L. Wang, D. Han, E. Wang, N. Huskey et al., IRE1?? Cleaves Select microRNAs During ER Stress to Derepress Translation of Proapoptotic Caspase-2, Science, vol.312, issue.5775, pp.818-822, 2012.
DOI : 10.1126/science.1123835

URL : http://europepmc.org/articles/pmc3742121?pdf=render

M. Maurel, E. Chevet, J. Tavernier, and S. Gerlo, Getting RIDD of RNA: IRE1 in cell fate regulation, Trends in Biochemical Sciences, vol.39, issue.5, pp.245-254, 2014.
DOI : 10.1016/j.tibs.2014.02.008

R. Ghosh, L. Wang, E. Wang, B. Perera, A. Igbaria et al., Allosteric Inhibition of the IRE1?? RNase Preserves Cell Viability and Function during Endoplasmic Reticulum Stress, Cell, vol.158, issue.3, pp.534-548, 2014.
DOI : 10.1016/j.cell.2014.07.002

URL : https://doi.org/10.1016/j.cell.2014.07.002

A. Koong, A. Niwa, and M. , Ire1 has distinct catalytic mechanisms for XBP1/HAC1 splicing and RIDD, Cell Rep, vol.9, pp.850-858, 2014.

M. Bouchecareilh, A. Higa, S. Fribourg, M. Moenner, and E. Chevet, Peptides derived from the bifunctional kinase/RNase enzyme IRE1?? modulate IRE1?? activity and protect cells from endoplasmic reticulum stress, The FASEB Journal, vol.25, issue.9, pp.3115-3129, 2011.
DOI : 10.1126/science.1090031

D. Han, A. Lerner, V. Walle, L. Upton, J. Xu et al., IRE1?? Kinase Activation Modes Control Alternate Endoribonuclease Outputs to Determine Divergent Cell Fates, Cell, vol.138, issue.3, pp.562-575, 2009.
DOI : 10.1016/j.cell.2009.07.017

D. Scheuner, B. Song, E. Mcewen, C. Liu, R. Laybutt et al., Translational Control Is Required for the Unfolded Protein Response and In Vivo Glucose Homeostasis, Molecular Cell, vol.7, issue.6, pp.1165-1176, 2001.
DOI : 10.1016/S1097-2765(01)00265-9

URL : https://doi.org/10.1016/s1097-2765(01)00265-9

H. Harding, Y. Zhang, A. Bertolotti, H. Zeng, and R. D. , Perk Is Essential for Translational Regulation and Cell Survival during the Unfolded Protein Response, Molecular Cell, vol.5, issue.5, pp.897-904, 2000.
DOI : 10.1016/S1097-2765(00)80330-5

URL : https://doi.org/10.1016/s1097-2765(00)80330-5

H. Harding, Y. Zhang, H. Zeng, I. Novoa, P. Lu et al., An Integrated Stress Response Regulates Amino Acid Metabolism and Resistance to Oxidative Stress, Molecular Cell, vol.11, issue.3, pp.619-633, 2003.
DOI : 10.1016/S1097-2765(03)00105-9

URL : https://doi.org/10.1016/s1097-2765(03)00105-9

J. Ye and C. Koumenis, ATF4, an ER Stress and Hypoxia-Inducible Transcription Factor and its Potential Role in Hypoxia Tolerance and Tumorigenesis, Current Molecular Medicine, vol.9, issue.4, pp.411-416, 2009.
DOI : 10.2174/156652409788167096

J. Han, S. Back, J. Hur, Y. Lin, R. Gildersleeve et al., ER-stress-induced transcriptional regulation increases protein synthesis leading to cell??death, Nature Cell Biology, vol.93, issue.5, pp.481-490, 2013.
DOI : 10.1006/dbio.2000.9699

URL : http://europepmc.org/articles/pmc3692270?pdf=render

I. Novoa, H. Zeng, H. Harding, and R. D. , -Mediated Dephosphorylation of eIF2??, The Journal of Cell Biology, vol.12, issue.128, pp.1011-1022, 2001.
DOI : 10.1101/gad.12.7.982

J. Obacz, A. T. , L. Reste, P. Urra, H. Quillien et al., Endoplasmic reticulum proteostasis in glioblastoma???From molecular mechanisms to therapeutic perspectives, Science Signaling, vol.1648, issue.470, p.2323, 2017.
DOI : 10.1016/j.brainres.2016.02.033

URL : https://hal.archives-ouvertes.fr/hal-01502552

L. Epple, R. Dodd, A. Merz, A. Dechkovskaia, M. Herring et al., Induction of the Unfolded Protein Response Drives Enhanced Metabolism and Chemoresistance in Glioma Cells, PLoS ONE, vol.279, issue.8, p.73267, 2013.
DOI : 10.1371/journal.pone.0073267.s006

P. Pyrko, A. Schonthal, F. Hofman, T. Chen, and A. Lee, The Unfolded Protein Response Regulator GRP78/BiP as a Novel Target for Increasing Chemosensitivity in Malignant Gliomas, Cancer Research, vol.67, issue.20, pp.9809-9816, 2007.
DOI : 10.1158/0008-5472.CAN-07-0625

URL : http://cancerres.aacrjournals.org/content/canres/67/20/9809.full.pdf

H. Xiang, C. Cazacu, S. Finniss, S. Kazimirsky, G. Lemke et al., GRP78 is overexpressed in glioblastomas and regulates glioma cell growth and apoptosis, Neuro-oncology, vol.10, pp.236-243, 2008.

E. Lee, P. Nichols, D. Spicer, S. Groshen, M. Yu et al., GRP78 as a Novel Predictor of Responsiveness to Chemotherapy in Breast Cancer, Cancer Research, vol.66, issue.16, pp.7849-7853, 2006.
DOI : 10.1158/0008-5472.CAN-06-1660

P. Fernandez, S. Tabbara, L. Jacobs, F. Manning, T. Tsangaris et al., Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions, Breast Cancer Research and Treatment, vol.58, issue.Suppl.740, pp.15-26, 2000.
DOI : 10.1007/BF00666207

P. Scriven, S. Coulson, R. Haines, S. Balasubramanian, S. Cross et al., Activation and clinical significance of the unfolded protein response in breast cancer, British Journal of Cancer, vol.8, issue.10, pp.1692-1698, 2009.
DOI : 10.1007/s10585-006-9051-9

N. Andruska, X. Zheng, X. Yang, W. Helferich, and D. Shapiro, Anticipatory estrogen activation of the unfolded protein response is linked to cell proliferation and poor survival in estrogen receptor ??-positive breast cancer, Oncogene, vol.62, issue.29, pp.3760-3769, 2015.
DOI : 10.1371/journal.pbio.0020108

J. Ming, S. Ruan, M. Wang, D. Ye, N. Fan et al., A novel chemical, STF-083010, reverses tamoxifen-related drug resistance in breast cancer by inhibiting IRE1/XBP1, Oncotarget, vol.6, issue.38, pp.40692-40703, 2015.
DOI : 10.18632/oncotarget.5827

URL : http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=download&path%5B%5D=5827&path%5B%5D=17775

N. Mhaidat, K. Alzoubi, N. Almomani, and O. Khabour, Expression of glucose regulated protein 78 (GRP78) determines colorectal cancer response to chemotherapy, Cancer Biomarkers, vol.15, issue.2, pp.197-203, 2015.
DOI : 10.3233/CBM-140454

T. Fujimoto, K. Yoshimatsu, K. Watanabe, H. Yokomizo, T. Otani et al., Overexpression of human X-box binding protein 1 (XBP-1) in colorectal adenomas and adenocarcinomas, Anticancer Res, vol.27, pp.127-131, 2007.

T. Drake, J. Ritchie, C. Kanthou, J. Staves, R. Narramore et al., Targeting the endoplasmic reticulum mediates radiation sensitivity in colorectal cancer, Experimental and Molecular Pathology, vol.98, issue.3, pp.532-539, 2015.
DOI : 10.1016/j.yexmp.2015.03.032

N. Mhaidat, K. Alzoubi, O. Khabour, M. Banihani, Q. Balas et al., GRP78 regulates sensitivity of human colorectal cancer cells to DNA targeting agents, Cytotechnology, vol.8, issue.Suppl 3, pp.459-467, 2016.
DOI : 10.1371/journal.pone.0080071

URL : http://europepmc.org/articles/pmc4846646?pdf=render

N. Piton, J. Wason, E. Colasse, M. Cornic, F. Lemoine et al., Endoplasmic reticulum stress, unfolded protein response and development of colon adenocarcinoma, Virchows Archiv, vol.11, issue.2, pp.145-154, 2016.
DOI : 10.1158/1078-0432.CCR-05-0081

W. Fu, X. Wu, J. Li, Z. Mo, Z. Yang et al., Upregulation of GRP78 in Renal Cell Carcinoma and Its Significance, Urology, vol.75, issue.3, pp.603-607, 2010.
DOI : 10.1016/j.urology.2009.05.007

F. Al-rawashdeh, P. Scriven, I. Cameron, P. Vergani, and L. Wyld, Unfolded protein response activation contributes to chemoresistance in hepatocellular carcinoma, European Journal of Gastroenterology & Hepatology, vol.22, issue.9, pp.1099-1105, 2010.
DOI : 10.1097/MEG.0b013e3283378405

M. Shuda, N. Kondoh, N. Imazeki, K. Tanaka, T. Okada et al., Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis, Journal of Hepatology, vol.38, issue.5, pp.605-614, 2003.
DOI : 10.1016/S0168-8278(03)00029-1

J. Tang, Y. Guo, Y. Zhang, X. Yu, L. Li et al., CD147 induces UPR to inhibit apoptosis and chemosensitivity by increasing the transcription of Bip in hepatocellular carcinoma, Cell Death & Differentiation, vol.26, issue.11, pp.1779-1790, 2012.
DOI : 10.1016/j.cell.2006.01.040

T. Sakatani, K. Maemura, N. Hiyama, Y. Amano, K. Watanabe et al., High expression of IRE1 in lung adenocarcinoma is associated with a lower rate of recurrence, Japanese Journal of Clinical Oncology, vol.8, issue.6, pp.543-550, 2017.
DOI : 10.1371/journal.pone.0054060

H. Tsai, Y. Yang, A. Wu, C. Yang, Y. Liu et al., Endoplasmic reticulum ribosome-binding protein 1 (RRBP1) overexpression is frequently found in lung cancer patients and alleviates intracellular stress-induced apoptosis through the enhancement of GRP78, Oncogene, vol.9, issue.41, pp.4921-4931, 2013.
DOI : 10.1023/A:1006326203858

, ER stress and cancer chemotherapy resistance T Avril et al

Z. Niu, M. Wang, L. Zhou, L. Yao, Q. Liao et al., Elevated GRP78 expression is associated with poor prognosis in patients with pancreatic cancer, Scientific Reports, vol.11, issue.1, p.16067, 2015.
DOI : 10.1593/neo.09878

B. Kong, W. Wu, N. Valkovska, C. Jager, X. Hong et al., A common genetic variation of melanoma inhibitory activity-2 labels a subtype of pancreatic adenocarcinoma with high endoplasmic reticulum stress levels, Scientific Reports, vol.12, issue.8, p.8109, 2015.
DOI : 10.1111/j.1477-2574.2010.00220.x

G. Genovese, A. Carugo, J. Tepper, F. Robinson, L. Li et al., Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer, Nature, vol.25, issue.7641, pp.362-366, 2017.
DOI : 10.1038/75556

Y. Bobak, Y. Kurlishchuk, B. Vynnytska-myronovska, O. Grydzuk, G. Shuvayeva et al., Arginine deprivation induces endoplasmic reticulum stress in human solid cancer cells, The International Journal of Biochemistry & Cell Biology, vol.70, pp.29-38, 2016.
DOI : 10.1016/j.biocel.2015.10.027

E. Cuevas, P. Eraso, M. Mazon, V. Santos, G. Moreno-bueno et al., LOXL2 drives epithelial-mesenchymal transition via activation of IRE1-XBP1 signalling pathway, Scientific Reports, vol.317, p.44988, 2017.
DOI : 10.1016/j.bbrc.2004.03.058

X. Shen, Y. Xue, Y. Si, Q. Wang, Z. Wang et al., The unfolded protein response potentiates epithelial-to-mesenchymal transition (EMT) of gastric cancer cells under severe hypoxic conditions, Medical Oncology, vol.286, issue.1, p.447, 2015.
DOI : 10.1074/jbc.M110.181164

J. Fang, S. Su, C. Hsiao, C. Chang, C. Lin et al., Silencing glucoseregulated protein 78 induced renal cell carcinoma cell line G1 cell-cycle arrest and resistance to conventional chemotherapy, Urol Oncol, vol.32, pp.29-30, 2014.

T. Zhou, X. Lv, X. Guo, B. Ruan, D. Liu et al., RACK1 modulates apoptosis induced by sorafenib in HCC cells by interfering with the IRE1/XBP1 axis, Oncology Reports, vol.33, issue.6, pp.3006-3014, 2015.
DOI : 10.3892/or.2015.3920

M. Cerezo, A. Lehraiki, A. Millet, F. Rouaud, M. Plaisant et al., Compounds Triggering ER Stress Exert Anti-Melanoma Effects and Overcome BRAF Inhibitor Resistance, Cancer Cell, vol.29, issue.6, pp.805-819, 2016.
DOI : 10.1016/j.ccell.2016.04.013

URL : https://hal.archives-ouvertes.fr/hal-01357448

S. Manie, J. Lebeau, and E. Chevet, Cellular Mechanisms of Endoplasmic Reticulum Stress Signaling in Health and Disease. 3. Orchestrating the unfolded protein response in oncogenesis: an update, American Journal of Physiology-Cell Physiology, vol.289, issue.10, pp.901-907, 2014.
DOI : 10.1091/mbc.E13-09-0511

J. Heijmans, J. Van-lidth-de-jeude, B. Koo, S. Rosekrans, M. Wielenga et al., ER Stress Causes Rapid Loss of Intestinal Epithelial Stemness through Activation of the Unfolded Protein Response, Cell Reports, vol.3, issue.4, pp.1128-1139, 2013.
DOI : 10.1016/j.celrep.2013.02.031

L. Vermeulen and H. Snippert, Stem cell dynamics in homeostasis and cancer of the intestine, Nature Reviews Cancer, vol.118, issue.7, pp.468-480, 2014.
DOI : 10.4161/cc.9.8.11198

L. Niederreiter, T. Fritz, T. Adolph, A. Krismer, F. Offner et al., ER stress transcription factor Xbp1 suppresses intestinal tumorigenesis and directs intestinal stem cells, The Journal of Experimental Medicine, vol.2, issue.10, pp.2041-2056, 2013.
DOI : 10.1038/nature07589

D. Schewe and J. Aguirre-ghiso, ATF6??-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo, Proceedings of the National Academy of Sciences, vol.63, issue.7, pp.10519-10524, 2008.
DOI : 10.1371/journal.pone.0000615

D. Fels and C. Koumenis, The PERK/eIF2??/ATF4 module of the UPR in hypoxia resistance and tumor growth, Cancer Biology & Therapy, vol.5, issue.7, pp.723-728, 2006.
DOI : 10.4161/cbt.5.7.2967

X. Chen, D. Iliopoulos, Q. Zhang, Q. Tang, M. Greenblatt et al., XBP1 promotes triple-negative breast cancer by controlling the HIF1?? pathway, Nature, vol.365, issue.7494, pp.103-107, 2014.
DOI : 10.1016/S0140-6736(05)17947-1

N. Dejeans, O. Pluquet, S. Lhomond, F. Grise, M. Bouchecareilh et al., Autocrine control of glioma cells adhesion and migration through IRE1??-mediated cleavage of SPARC mRNA, Journal of Cell Science, vol.125, issue.18, pp.4278-4287, 2012.
DOI : 10.1242/jcs.099291

D. Hanahan and R. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-674, 2011.
DOI : 10.1016/j.cell.2011.02.013

M. Bissell and W. Hines, Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression, Nature Medicine, vol.23, issue.3, pp.320-329, 2011.
DOI : 10.1200/JCO.2005.11.030

C. Leung and J. Brugge, Outgrowth of single oncogene-expressing cells from suppressive epithelial environments, Nature, vol.65, issue.7385, pp.410-413, 2012.
DOI : 10.1158/0008-5472.CAN-05-1196

URL : http://europepmc.org/articles/pmc3297969?pdf=render

H. Li, X. Chen, Y. Gao, J. Wu, F. Zeng et al., XBP1 induces snail expression to promote epithelial- to-mesenchymal transition and invasion of breast cancer cells, Cellular Signalling, vol.27, issue.1, pp.82-89, 2015.
DOI : 10.1016/j.cellsig.2014.09.018

Y. Feng, E. Sokol, D. Vecchio, C. Sanduja, S. Claessen et al., Epithelial-to-Mesenchymal Transition Activates PERK-eIF2?? and Sensitizes Cells to Endoplasmic Reticulum Stress, Cancer Discovery, vol.4, issue.6, pp.702-715, 2014.
DOI : 10.1158/2159-8290.CD-13-0945

URL : http://cancerdiscovery.aacrjournals.org/content/candisc/4/6/702.full.pdf

L. Ulianich, C. Garbi, A. Treglia, D. Punzi, C. Miele et al., ER stress is associated with dedifferentiation and an epithelial-to-mesenchymal transition-like phenotype in PC Cl3 thyroid cells, Journal of Cell Science, vol.121, issue.4, pp.477-486, 2008.
DOI : 10.1242/jcs.017202

URL : http://jcs.biologists.org/content/joces/121/4/477.full.pdf

C. Vecchio, Y. Feng, E. Sokol, E. Tillman, S. Sanduja et al., De-Differentiation Confers Multidrug Resistance Via Noncanonical PERK-Nrf2 Signaling, PLoS Biology, vol.5, issue.9, p.1001945, 2014.
DOI : 10.1371/journal.pbio.1001945.s006

N. Sheshadri, J. Catanzaro, A. Bott, Y. Sun, E. Ullman et al., SCCA1/SERPINB3 Promotes Oncogenesis and Epithelial-Mesenchymal Transition via the Unfolded Protein Response and IL6 Signaling, Cancer Research, vol.74, issue.21, pp.6318-6329, 2014.
DOI : 10.1158/0008-5472.CAN-14-0798

URL : http://cancerres.aacrjournals.org/content/canres/74/21/6318.full.pdf

G. Auf, A. Jabouille, S. Guerit, R. Pineau, M. Delugin et al., Inositol-requiring enzyme 1?? is a key regulator of angiogenesis and invasion in malignant glioma, Proceedings of the National Academy of Sciences, vol.5, issue.10, pp.15553-15558, 2010.
DOI : 10.1186/gb-2004-5-10-r80

B. Drogat, A. P. Nguyen, D. Bouchecareilh, M. Pineau, R. Nalbantoglu et al., Cancer Research, vol.67, issue.14, pp.6700-6707, 2007.
DOI : 10.1158/0008-5472.CAN-06-3235

O. Pluquet, N. Dejeans, M. Bouchecareilh, S. Lhomond, R. Pineau et al., Posttranscriptional Regulation of PER1 Underlies the Oncogenic Function of IRE??, Cancer Research, vol.73, issue.15, pp.4732-4743, 2013.
DOI : 10.1158/0008-5472.CAN-12-3989

J. Blais, C. Addison, R. Edge, T. Falls, H. Zhao et al., Perk-Dependent Translational Regulation Promotes Tumor Cell Adaptation and Angiogenesis in Response to Hypoxic Stress, Molecular and Cellular Biology, vol.26, issue.24, pp.9517-9532, 2006.
DOI : 10.1128/MCB.01145-06

K. Ozawa, Y. Tsukamoto, O. Hori, Y. Kitao, H. Yanagi et al., Regulation of tumor angiogenesis by oxygen-regulated protein 150, an inducible endoplasmic reticulum chaperone, Cancer Res, vol.61, pp.4206-4213, 2001.

T. Miyagi, O. Hori, K. Koshida, M. Egawa, H. Kato et al., Antitumor effect of reduction of 150-kDa oxygen-regulated protein expression on human prostate cancer cells, International Journal of Urology, vol.85, issue.10, pp.577-585, 2002.
DOI : 10.1002/(SICI)1097-0215(20000101)85:1<1::AID-IJC1>3.0.CO;2-O

Z. Wang, Y. Deng, N. Gao, Z. Pedrozo, D. Li et al., Spliced X-Box Binding Protein 1 Couples the Unfolded Protein Response to Hexosamine Biosynthetic Pathway, Cell, vol.156, issue.6, pp.1179-1192, 2014.
DOI : 10.1016/j.cell.2014.01.014

M. Denzel, N. Storm, A. Gutschmidt, R. Baddi, Y. Hinze et al., Hexosamine Pathway Metabolites Enhance Protein Quality Control and Prolong Life, Cell, vol.156, issue.6, pp.1167-1178, 2014.
DOI : 10.1016/j.cell.2014.01.061

C. Ferrer, T. Lynch, V. Sodi, J. Falcone, L. Schwab et al., O-GlcNAcylation Regulates Cancer Metabolism and Survival Stress Signaling via Regulation of the HIF-1 Pathway, Molecular Cell, vol.54, issue.5, pp.820-831, 2014.
DOI : 10.1016/j.molcel.2014.04.026

J. Blais, V. Filipenko, M. Bi, H. Harding, R. D. Koumenis et al., Activating Transcription Factor 4 Is Translationally Regulated by Hypoxic Stress, Molecular and Cellular Biology, vol.24, issue.17, pp.7469-7482, 2004.
DOI : 10.1128/MCB.24.17.7469-7482.2004

M. Bi, C. Naczki, M. Koritzinsky, D. Fels, J. Blais et al., ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth, The EMBO Journal, vol.162, issue.19, pp.3470-3481, 2005.
DOI : 10.1128/MCB.18.12.7499

K. Rouschop, T. Van-den-beucken, L. Dubois, H. Niessen, J. Bussink et al., The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5, Journal of Clinical Investigation, vol.120, issue.1, pp.127-141, 2010.
DOI : 10.1172/JCI40027DS1

M. Ogata, S. Hino, A. Saito, K. Morikawa, S. Kondo et al., Autophagy Is Activated for Cell Survival after Endoplasmic Reticulum Stress, Molecular and Cellular Biology, vol.26, issue.24, pp.9220-9231, 2006.
DOI : 10.1128/MCB.01453-06

M. Gottesman, Mechanisms of Cancer Drug Resistance, Annual Review of Medicine, vol.53, issue.1, pp.615-627, 2002.
DOI : 10.1146/annurev.med.53.082901.103929

C. Holohan, V. Schaeybroeck, S. Longley, D. Johnston, and P. , Cancer drug resistance: an evolving paradigm, Nature Reviews Cancer, vol.14, issue.10, pp.714-726, 2013.
DOI : 10.1093/neuonc/nos158

D. Longley and P. Johnston, Molecular mechanisms of drug resistance, The Journal of Pathology, vol.1603, issue.2, pp.275-292, 2005.
DOI : 10.1111/j.1349-7006.2002.tb02176.x

Z. Chen and A. Tiwari, Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases, FEBS Journal, vol.406, issue.Pt 2, pp.3226-3245, 2011.
DOI : 10.1042/BJ20070292

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2011.08235.x/pdf

K. Sodani, A. Patel, R. Kathawala, and Z. Chen, Multidrug resistance associated proteins in multidrug resistance, Chinese Journal of Cancer, vol.31, issue.2, pp.58-72, 2012.
DOI : 10.5732/cjc.011.10329

R. Agarwal and S. Kaye, Ovarian cancer: strategies for overcoming resistance to chemotherapy, Nature Reviews Cancer, vol.19, issue.Suppl. 9, pp.502-516, 2003.
DOI : 10.1200/JCO.2002.03.038

, 109

P. Borst, R. Evers, M. Kool, and J. Wijnholds, A Family of Drug Transporters: the Multidrug Resistance-Associated Proteins, JNCI Journal of the National Cancer Institute, vol.97, issue.11, pp.1295-1302, 2000.
DOI : 10.1073/pnas.100041297

A. Chou and R. Gorlick, Chemotherapy resistance in osteosarcoma: current challenges and future directions, Expert Review of Anticancer Therapy, vol.104, issue.7, pp.1075-1085, 2006.
DOI : 10.1002/cncr.21530

M. Mann, E. Pereira, N. Liao, and L. Hendershot, UPR-Induced Resistance to Etoposide Is Downstream of PERK and Independent of Changes in Topoisomerase II?? Levels, PLoS ONE, vol.95, issue.10, p.47931, 2012.
DOI : 10.1371/journal.pone.0047931.s003

P. Bouwman and J. Jonkers, The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance, Nature Reviews Cancer, vol.31, issue.9, pp.587-598, 2012.
DOI : 10.1002/humu.21180

M. Davies, D. Barraclough, C. Stewart, K. Joyce, R. Eccles et al., Expression and splicing of the unfolded protein response gene XBP-1 are significantly associated with clinical outcome of endocrine-treated breast cancer, International Journal of Cancer, vol.5, issue.1, pp.85-88, 2008.
DOI : 10.4161/cbt.5.7.2973

E. Lee, P. Nichols, S. Groshen, D. Spicer, and A. Lee, GRP78 as potential predictor for breast cancer response to adjuvant taxane therapy, International Journal of Cancer, vol.66, issue.3, pp.726-731, 2011.
DOI : 10.1177/002215549704500301

D. Ryan, S. Carberry, A. Murphy, A. Lindner, J. Fay et al., Calnexin, an ER-induced protein, is a prognostic marker and potential therapeutic target in colorectal cancer, Journal of Translational Medicine, vol.75, issue.6, p.196, 2016.
DOI : 10.1016/0092-8674(93)90331-J

R. Reddy, C. Mao, P. Baumeister, R. Austin, R. Kaufman et al., Endoplasmic Reticulum Chaperone Protein GRP78 Protects Cells from Apoptosis Induced by Topoisomerase Inhibitors, Journal of Biological Chemistry, vol.347, issue.23, pp.20915-20924, 2003.
DOI : 10.1038/35014014

M. Yan, J. Ni, D. Song, M. Ding, and J. Huang, Activation of unfolded protein response protects osteosarcoma cells from cisplatin-induced apoptosis through NF-kappaB pathway, Int J Clin Exp Pathol, vol.8, pp.10204-10215, 2015.

Z. Li, C. Zhang, L. Chen, B. Chen, Q. Li et al., Radicol, a Novel Trinorguaiane-Type Sesquiterpene, Induces Temozolomide-Resistant Glioma Cell Apoptosis via ER Stress and Akt/mTOR Pathway Blockade, Phytotherapy Research, vol.22, issue.5, pp.729-739, 2017.
DOI : 10.1080/14786410601129523

G. Chakravarty, A. Mathur, P. Mallade, S. Gerlach, J. Willis et al., Nelfinavir targets multiple drug resistance mechanisms to increase the efficacy of doxorubicin in MCF-7/Dox breast cancer cells, Biochimie, vol.124, pp.53-64, 2016.
DOI : 10.1016/j.biochi.2016.01.014

Y. Fu, J. Li, and A. Lee, GRP78/BiP Inhibits Endoplasmic Reticulum BIK and Protects Human Breast Cancer Cells against Estrogen Starvation-Induced Apoptosis, Cancer Research, vol.67, issue.8, pp.3734-3740, 2007.
DOI : 10.1158/0008-5472.CAN-06-4594

B. Gomez, R. Riggins, A. Shajahan, U. Klimach, A. Wang et al., Human X-Box binding protein-1 confers both estrogen independence and antiestrogen resistance in breast cancer cell lines, The FASEB Journal, vol.21, issue.14, pp.4013-4027, 2007.
DOI : 10.1242/jcs.00754

K. Cook, P. Clarke, J. Parmar, R. Hu, J. Schwartz-roberts et al., Knockdown of estrogen receptor-?? induces autophagy and inhibits antiestrogen-mediated unfolded protein response activation, promoting ROS-induced breast cancer cell death, The FASEB Journal, vol.57, issue.9, pp.3891-3905, 2014.
DOI : 10.1016/j.bcp.2006.04.011

URL : http://www.fasebj.org/content/28/9/3891.full.pdf

R. Hu, A. Warri, L. Jin, A. Zwart, R. Riggins et al., NF-??B Signaling Is Required for XBP1 (Unspliced and Spliced)-Mediated Effects on Antiestrogen Responsiveness and Cell Fate Decisions in Breast Cancer, Molecular and Cellular Biology, vol.17, issue.2, pp.379-390, 2015.
DOI : 10.1247/csf.06028

URL : http://mcb.asm.org/content/35/2/379.full.pdf

M. Li, J. Wang, J. Jing, H. Hua, T. Luo et al., Synergistic promotion of breast cancer cells death by targeting molecular chaperone GRP78 and heat shock protein 70, Journal of Cellular and Molecular Medicine, vol.77, issue.11-12, pp.4540-4550, 2009.
DOI : 10.4161/cc.5.22.3448

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1582-4934.2008.00575.x/pdf

B. Yeung, B. Kwan, Q. He, A. Lee, J. Liu et al., Glucose-regulated protein 78 as a novel effector of BRCA1 for inhibiting stress-induced apoptosis, Oncogene, vol.27, issue.53, pp.6782-6789, 2008.
DOI : 10.1038/sj.onc.1206319

URL : http://www.nature.com/onc/journal/v27/n53/pdf/onc2008290a.pdf

X. Zhang, K. Cook, A. Warri, I. Cruz, M. Rosim et al., Lifetime Genistein Intake Increases the Response of Mammary Tumors to Tamoxifen in Rats, Clinical Cancer Research, vol.23, issue.3, pp.814-824, 2017.
DOI : 10.1158/1078-0432.CCR-16-1735

S. 127-kumandan, N. Mahadevan, K. Chiu, A. Delaney, and M. Zanetti, Activation of the unfolded protein response bypasses trastuzumab-mediated inhibition of the PI-3K pathway, Cancer Letters, vol.329, issue.2, pp.236-242, 2013.
DOI : 10.1016/j.canlet.2012.11.014

A. Fujimoto, K. Kawana, A. Taguchi, K. Adachi, M. Sato et al., Inhibition of endoplasmic reticulum (ER) stress sensors sensitizes cancer stem-like cells to ER stress-mediated apoptosis, Oncotarget, vol.7, issue.32, pp.51854-51864, 2016.
DOI : 10.18632/oncotarget.10126

URL : http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=download&path%5B%5D=10126&path%5B%5D=31863

A. 129-ranganathan, L. Zhang, A. Adam, and J. Aguirre-ghiso, Functional Coupling of p38-Induced Up-regulation of BiP and Activation of RNA-Dependent Protein Kinase???Like Endoplasmic Reticulum Kinase to Drug Resistance of Dormant Carcinoma Cells, Cancer Research, vol.66, issue.3, pp.1702-1711, 2006.
DOI : 10.1158/0008-5472.CAN-05-3092

M. Gray, M. Mann, J. Nitiss, and L. Hendershot, Activation of the unfolded protein response is necessary and sufficient for reducing topoisomerase IIalpha protein levels and decreasing sensitivity to topoisomerase-targeted drugs, Mol Pharmacol, vol.68, pp.1699-1707, 2005.

I. Salaroglio, E. Panada, E. Moiso, I. Buondonno, P. Provero et al., PERK induces resistance to cell death elicited by endoplasmic reticulum stress and chemotherapy, Molecular Cancer, vol.47, issue.1, p.91, 2017.
DOI : 10.1016/j.freeradbiomed.2009.09.006

URL : https://molecular-cancer.biomedcentral.com/track/pdf/10.1186/s12943-017-0657-0?site=molecular-cancer.biomedcentral.com

M. Salazar, S. Hernandez-tiedra, S. Torres, M. Lorente, M. Guzman et al., Detecting Autophagy in Response to ER Stress Signals in Cancer, Methods Enzymol, vol.489, pp.297-317, 2011.
DOI : 10.1016/B978-0-12-385116-1.00017-0

J. Parmar, K. Cook, A. Shajahan-haq, P. Clarke, I. Tavassoly et al., Modelling the effect of GRP78 on anti-oestrogen sensitivity and resistance in breast cancer, Interface Focus, vol.105, issue.49, p.20130012, 2013.
DOI : 10.1073/pnas.0807691105

L. Mercier, M. Lefranc, F. Mijatovic, T. Debeir, O. Haibe-kains et al., Evidence of galectin-1 involvement in glioma chemoresistance???, Toxicology and Applied Pharmacology, vol.229, issue.2, pp.172-183, 2008.
DOI : 10.1016/j.taap.2008.01.009

X. Liu, Q. Cheng, W. Geng, C. Ling, Y. Liu et al., Enhancement of cisplatin-based TACE by a hemoglobin-based oxygen carrier in an orthotopic rat HCC model, Artificial Cells, Nanomedicine, and Biotechnology, vol.12, issue.4, pp.229-236, 2014.
DOI : 10.1101/gad.12.7.982

L. Pi, X. Li, Q. Song, Y. Shen, X. Lu et al., Knockdown of glucose-regulated protein 78 abrogates chemoresistance of hypopharyngeal carcinoma cells to cisplatin induced by unfolded protein in response to severe hypoxia, Oncology Letters, vol.7, issue.3, pp.685-692, 2014.
DOI : 10.3892/ol.2013.1753

A. Notte, M. Rebucci, M. Fransolet, E. Roegiers, M. Genin et al., Taxol-induced unfolded protein response activation in breast cancer cells exposed to hypoxia: ATF4 activation regulates autophagy and inhibits apoptosis, The International Journal of Biochemistry & Cell Biology, vol.62, pp.1-14, 2015.
DOI : 10.1016/j.biocel.2015.02.010

S. Sun, D. Lee, N. Lee, J. Pu, S. Wong et al., Hyperoxia resensitizes chemoresistant human glioblastoma cells to temozolomide, Journal of Neuro-Oncology, vol.277, issue.3, pp.467-475, 2012.
DOI : 10.1016/S0891-5849(03)00494-5

URL : http://doi.org/10.1007/s11060-012-0923-3

D. Lee, S. Sun, A. Ho, K. Kiang, X. Zhang et al., Hyperoxia resensitizes chemoresistant glioblastoma cells to temozolomide through unfolded protein response, Anticancer Res, vol.34, pp.2957-2966, 2014.

F. Visioli, Y. Wang, G. Alam, Y. Ning, P. Rados et al., Glucose-Regulated Protein 78 (Grp78) Confers Chemoresistance to Tumor Endothelial Cells under Acidic Stress, PLoS ONE, vol.292, issue.6, p.101053, 2014.
DOI : 10.1371/journal.pone.0101053.g006

URL : https://doi.org/10.1371/journal.pone.0101053

D. Doultsinos, T. Avril, S. Lhomond, N. Dejeans, P. Guedat et al., Control of the Unfolded Protein Response in Health and Disease, SLAS DISCOVERY: Advancing Life Sciences R&D, vol.7, issue.7, pp.787-800, 2017.
DOI : 10.1172/JCI73448

URL : https://hal.archives-ouvertes.fr/hal-01585901

L. Palam, J. Gore, K. Craven, J. Wilson, and M. Korc, Integrated stress response is critical for gemcitabine resistance in pancreatic ductal adenocarcinoma, Cell Death & Disease, vol.1846, issue.10, p.1913, 2015.
DOI : 10.1172/JCI71526

URL : http://www.nature.com/cddis/journal/v6/n10/pdf/cddis2015264a.pdf

H. Lin, D. Guo, X. , K. Masouleh, B. Gery et al., Inhibition of IRE1alpha-driven pro-survival pathways is a promising therapeutic application in acute myeloid leukemia, Oncotarget, vol.7, pp.18736-18749, 2016.

R. Bhattacharjee, A. Devi, and S. Mishra, Molecular docking and molecular dynamics studies reveal structural basis of inhibition and selectivity of inhibitors EGCG and OSU-03012 toward glucose regulated protein-78 (GRP78) overexpressed in glioblastoma, Journal of Molecular Modeling, vol.8, issue.3, p.272, 2015.
DOI : 10.1016/S1074-5521(01)00015-1

A. Lee, Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential, Nature Reviews Cancer, vol.5, issue.4, pp.263-276, 2014.
DOI : 10.1371/journal.pone.0010852

URL : http://europepmc.org/articles/pmc4158750?pdf=render

J. Adams, The development of proteasome inhibitors as anticancer drugs, Cancer Cell, vol.5, issue.5, pp.417-421, 2004.
DOI : 10.1016/S1535-6108(04)00120-5

URL : https://doi.org/10.1016/s1535-6108(04)00120-5

Y. Shi, Z. Ding, J. Zhou, B. Hui, G. Shi et al., Targeting autophagy enhances sorafenib lethality for hepatocellular carcinoma via ER stress-related apoptosis, Autophagy, vol.7, issue.10, pp.1159-1172, 2011.
DOI : 10.4161/auto.7.10.16818

URL : http://www.tandfonline.com/doi/pdf/10.4161/auto.7.10.16818?needAccess=true

H. Zhang, S. Ramakrishnan, D. Triner, B. Centofanti, D. Maitra et al., Tumor-selective proteotoxicity of verteporfin inhibits colon cancer progression independently of YAP1, Science Signaling, vol.8, issue.397, p.98, 2015.
DOI : 10.1038/nbt.2839

URL : http://europepmc.org/articles/pmc4818013?pdf=render

D. Beck, H. Niessner, K. Smalley, K. Flaherty, K. Paraiso et al., Vemurafenib Potently Induces Endoplasmic Reticulum Stress-Mediated Apoptosis in BRAFV600E Melanoma Cells, Science Signaling, vol.6, issue.8, p.7, 2013.
DOI : 10.1371/journal.pone.0023429

URL : http://europepmc.org/articles/pmc3698985?pdf=render