K. Accession-numbers, K. , K. , K. , K. et al., Supplementary data Supplementary Figs. S1?S7 and Tables S1?S13 are available at DNARES Online

, Funding

J. Keller and W. , University of Rennes 1 -French Ministry of Higher Education and Research Mathieu Rousseau-Gueutin was supported by the European Union Seventh Framework Programme (FP7-CIG-2013-2017; Grant no. 333709) This work benefited from the International Associated Laboratory, Ecological Genomics of Polyploidy " supported by CNRS

R. 1. Cronk, Q. Ojeda, I. Pennington, and R. T. , Legume comparative genomics: progress in phylogenetics and phylogenomics, Current Opinion in Plant Biology, vol.9, issue.2, pp.99-103, 2006.
DOI : 10.1016/j.pbi.2006.01.011

G. P. Lewis, Legumes of the World, Royal Botanic Gardens, Kew, 2005.

L. , Towards a new classification system for legumes: progress report from the 6th International Legume Conference. South Afr, J. Bot, vol.89, pp.3-9, 2013.

J. J. Doyle and M. Luckow, The Rest of the Iceberg. Legume Diversity and Evolution in a Phylogenetic Context, PLANT PHYSIOLOGY, vol.131, issue.3, pp.900-910, 2003.
DOI : 10.1104/pp.102.018150

N. D. Young, F. Debellé, and G. E. Oldroyd, The Medicago genome provides insight into the evolution of rhizobial symbioses, Nature, vol.151, issue.7378, pp.520-524, 2011.
DOI : 10.1104/pp.109.144774

P. H. Graham and C. P. Vance, Legumes: Importance and Constraints to Greater Use, PLANT PHYSIOLOGY, vol.131, issue.3, pp.872-879, 2003.
DOI : 10.1104/pp.017004

Z. Cai, M. Guisinger, and H. Kim, Extensive Reorganization of the Plastid Genome of Trifolium subterraneum (Fabaceae) Is Associated with Numerous Repeated Sequences and Novel DNA Insertions, Journal of Molecular Evolution, vol.101, issue.6, pp.696-704, 2008.
DOI : 10.1105/tpc.11.9.1769

J. J. Doyle, J. L. Doyle, P. , and J. D. , Multiple Independent Losses of Two Genes and One Intron from Legume Chloroplast Genomes, Systematic Botany, vol.20, issue.3, p.272, 1995.
DOI : 10.2307/2419496

M. M. Guisinger, J. V. Kuehl, J. L. Boore, and R. K. Jansen, Extreme Reconfiguration of Plastid Genomes in the Angiosperm Family Geraniaceae: Rearrangements, Repeats, and Codon Usage, Molecular Biology and Evolution, vol.20, issue.17, pp.583-600, 2011.
DOI : 10.1093/bioinformatics/bth352

R. C. Haberle, H. M. Fourcade, J. L. Boore, and R. K. Jansen, Extensive Rearrangements in the Chloroplast Genome of Trachelium caeruleum Are Associated with Repeats and tRNA Genes, Journal of Molecular Evolution, vol.20, issue.4, pp.350-61, 2008.
DOI : 10.1079/9780851999043.0045

R. K. Jansen and T. A. Ruhlman, Plastid Genomes of Seed Plants, Genomics of Chloroplasts and Mitochondria, pp.103-129, 2012.
DOI : 10.1007/978-94-007-2920-9_5

A. M. Magee, S. Aspinall, and D. W. Rice, Localized hypermutation and associated gene losses in legume chloroplast genomes, Genome Research, vol.20, issue.12, pp.1700-1710, 2010.
DOI : 10.1101/gr.111955.110

M. Weng, J. C. Blazier, M. Govindu, and R. K. Jansen, Reconstruction of the Ancestral Plastid Genome in Geraniaceae Reveals a Correlation between Genome Rearrangements, Repeats, and Nucleotide Substitution Rates, Molecular Biology and Evolution, vol.123, issue.3, pp.645-59, 2014.
DOI : 10.1007/s10265-009-0291-z

D. V. Dugas, D. Hernandez, and E. J. Koenen, Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP, Scientific Reports, vol.19, issue.1, p.16958, 2015.
DOI : 10.1093/bioinformatics/19.2.301

G. E. Martin, M. Rousseau-gueutin, and S. Cordonnier, The first complete chloroplast genome of the Genistoid legume Lupinus luteus: evidence for a novel major lineage-specific rearrangement and new insights regarding plastome evolution in the legume family, Annals of Botany, vol.17, issue.7, pp.1197-210, 2014.
DOI : 10.1093/oxfordjournals.molbev.a026236

URL : https://hal.archives-ouvertes.fr/hal-01061902

E. N. Schwarz, T. A. Ruhlman, and J. S. Sabir, in papilionoids, Journal of Systematics and Evolution, vol.18, issue.5, pp.458-68, 2015.
DOI : 10.1101/gr.074492.107

S. Sherman-broyles, A. Bombarely, J. Grimwood, J. Schmutz, D. et al., and Six Additional Perennial Wild Relatives of Soybean, G3: Genes|Genomes|Genetics, vol.4, issue.10, pp.2023-2056, 2014.
DOI : 10.1534/g3.114.012690

A. V. Williams, L. M. Boykin, K. A. Howell, P. G. Nevill, and I. Small, The complete sequence of the Acacia ligulata chloroplast genome reveals a highly divergent clpP1 gene, PLOS ONE, vol.10, p.125768, 2015.

J. D. Palmer, J. M. Nugent, and L. A. Herbon, Unusual structure of geranium chloroplast DNA: A triple-sized inverted repeat, extensive gene duplications, multiple inversions, and two repeat families, Proceedings of the National Academy of Sciences, vol.84, issue.3, pp.769-73, 1987.
DOI : 10.1073/pnas.84.3.769

J. J. Doyle, J. L. Doyle, J. A. Ballenger, P. , and J. D. , The Distribution and Phylogenetic Significance of a 50-kb Chloroplast DNA Inversion in the Flowering Plant Family Leguminosae, Molecular Phylogenetics and Evolution, vol.5, issue.2, pp.429-438, 1996.
DOI : 10.1006/mpev.1996.0038

R. K. Jansen, M. F. Wojciechowski, E. Sanniyasi, S. Lee, D. et al., Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae), Molecular Phylogenetics and Evolution, vol.48, issue.3, pp.1204-1221, 2008.
DOI : 10.1016/j.ympev.2008.06.013

M. F. Wojciechowski, M. Lavin, and M. J. Sanderson, A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family, American Journal of Botany, vol.91, issue.11, pp.1846-1862, 2004.
DOI : 10.3732/ajb.91.11.1846

A. Bruneau, J. J. Doyle, P. , and J. D. , A Chloroplast DNA Inversion as a Subtribal Character in the Phaseoleae (Leguminosae), Systematic Botany, vol.15, issue.3, p.378, 1990.
DOI : 10.2307/2419351

X. Guo, S. Castillo-ram-irez, and V. Gonz-alez, Rapid evolutionary change of common bean (Phaseolus vulgaris L) plastome, and the genomic diversification of legume chloroplasts, BMC Genomics, vol.8, issue.1, p.228, 2007.
DOI : 10.1186/1471-2164-8-228

S. Tangphatsornruang, D. Sangsrakru, and J. Chanprasert, The Chloroplast Genome Sequence of Mungbean (Vigna radiata) Determined by High-throughput Pyrosequencing: Structural Organization and Phylogenetic Relationships, DNA Research, vol.27, issue.5, pp.11-22, 2010.
DOI : 10.1007/s00122-007-0706-y

URL : https://academic.oup.com/dnaresearch/article-pdf/17/1/11/991356/dsp025.pdf

S. H. Kazakoff, M. Imelfort, and D. Edwards, Capturing the Biofuel Wellhead and Powerhouse: The Chloroplast and Mitochondrial Genomes of the Leguminous Feedstock Tree Pongamia pinnata, PLoS ONE, vol.2, issue.12, p.51687, 2012.
DOI : 10.1371/journal.pone.0051687.s017

J. N. Timmis, M. A. Ayliffe, C. Y. Huang, M. , and W. , Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes, Nature Reviews Genetics, vol.26, issue.2, pp.123-158, 2004.
DOI : 10.1666/0094-8373(2000)026<0386:BPNGNS>2.0.CO;2

M. Ueda, T. Nishikawa, and M. Fujimoto, Substitution of the Gene for Chloroplast RPS16 Was Assisted by Generation of a Dual Targeting Signal, Molecular Biology and Evolution, vol.18, issue.5, pp.1566-75, 2008.
DOI : 10.1093/oxfordjournals.molbev.a003851

T. T. Fleischmann, L. B. Scharff, S. Alkatib, S. Hasdorf, M. A. Schö-ttler et al., Nonessential Plastid-Encoded Ribosomal Proteins in Tobacco: A Developmental Role for Plastid Translation and Implications for Reductive Genome Evolution, The Plant Cell, vol.23, issue.9, pp.3137-55, 2011.
DOI : 10.1105/tpc.111.088906

V. Kode, E. A. Mudd, S. Iamtham, and A. Day, The tobacco plastid accD gene is essential and is required for leaf development, The Plant Journal, vol.13, issue.2, pp.237-281, 2005.
DOI : 10.1074/jbc.270.27.16243

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2005.02533.x/pdf

T. Shikanai, K. Shimizu, K. Ueda, Y. Nishimura, T. Kuroiwa et al., The Chloroplast clpP Gene, Encoding a Proteolytic Subunit of ATP-Dependent Protease, is Indispensable for Chloroplast Development in Tobacco, Plant and Cell Physiology, vol.42, issue.3, pp.264-73, 2001.
DOI : 10.1073/pnas.91.25.12218

R. K. Jansen, Z. Cai, and L. A. Raubeson, Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns, Proceedings of the National Academy of Sciences, vol.402, issue.6760, pp.19369-19374, 2007.
DOI : 10.1038/46528

D. Cardoso, L. P. De-queiroz, and R. T. Pennington, Revisiting the phylogeny of papilionoid legumes: New insights from comprehensively sampled early-branching lineages, American Journal of Botany, vol.99, issue.12, 1991.
DOI : 10.3732/ajb.1200380

URL : http://www.amjbot.org/content/99/12/1991.full.pdf

S. Sveinsson and Q. Cronk, Evolutionary origin of highly repetitive plastid genomes within the clover genus (Trifolium), BMC Evolutionary Biology, vol.19, issue.6, 2014.
DOI : 10.1093/bioinformatics/19.2.301

URL : https://bmcevolbiol.biomedcentral.com/track/pdf/10.1186/s12862-014-0228-6?site=bmcevolbiol.biomedcentral.com

P. Gepts, W. D. Beavis, and E. C. Brummer, Legumes as a Model Plant Family. Genomics for Food and Feed Report of the Cross-Legume Advances through Genomics Conference, PLANT PHYSIOLOGY, vol.137, issue.4, pp.1228-1263, 2005.
DOI : 10.1104/pp.105.060871

J. S. Gladstones, C. A. Atkins, and J. Hamblin, Lupins as Crop Plants: Biology, Production, and Utilization. CAB International, 1998.

F. Cabello-hurtado, J. Keller, J. Ley, R. Sanchez-lucas, J. V. Jorr-in-novo et al., Proteomics for exploiting diversity of lupin seed storage proteins and their use as nutraceuticals for health and welfare, Journal of Proteomics, vol.143, pp.57-68, 2016.
DOI : 10.1016/j.jprot.2016.03.026

URL : https://hal.archives-ouvertes.fr/hal-01295645

H. Yang, Y. Tao, and Z. Zheng, Draft Genome Sequence, and a Sequence-Defined Genetic Linkage Map of the Legume Crop Species Lupinus angustifolius L, PLoS ONE, vol.86, issue.10, p.64799, 2013.
DOI : 10.1371/journal.pone.0064799.s009

A. Ainouche and R. J. Bayer, Phylogenetic Relationships in Lupinus (Fabaceae: Papilionoideae) Based on Internal Transcribed Spacer Sequences (ITS) of Nuclear Ribosomal DNA, American Journal of Botany, vol.86, issue.4, pp.590-607, 1999.
DOI : 10.2307/2656820

C. S. Drummond, R. J. Eastwood, S. T. Miotto, and C. E. Hughes, Multiple Continental Radiations and Correlates of Diversification in Lupinus (Leguminosae): Testing for Key Innovation with Incomplete Taxon Sampling, Systematic Biology, vol.166, issue.3, pp.443-60, 2012.
DOI : 10.1086/491685

R. J. Eastwood, C. S. Drummond, M. T. Schifino-wittmann, and H. , Lupins for health and wealth: 12th International Lupin Conference, Fremantle, Western Australia, International Lupin Association, vol.14, 2008.

C. Hughes and R. Eastwood, Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes, Proceedings of the National Academy of Sciences, vol.17, issue.8, pp.10334-10339, 2006.
DOI : 10.1093/bioinformatics/17.8.754

E. K?-ass and M. Wink, Molecular phylogeny and phylogeography ofLupinus (Leguminosae) inferred from nucleotide sequences of therbcL gene and ITS 1 + 2 regions of rDNA, Plant Systematics and Evolution, vol.16, issue.3-4, pp.139-167, 1997.
DOI : 10.1248/bpb.16.1182

F. Mahé, D. Markova, R. Pasquet, M. Misset, and A. A?¨nouchea?¨nouche, Isolation, phylogeny and evolution of the SymRK gene in the legume genus Lupinus L., Molecular Phylogenetics and Evolution, vol.60, issue.1, pp.49-61, 2011.
DOI : 10.1016/j.ympev.2011.04.017

F. Mahé, H. Pascual, and O. Coriton, New data and phylogenetic placement of the enigmatic Old World lupin: Lupinus mariae-josephi H. Pascual, Genetic Resources and Crop Evolution, vol.31, issue.1, pp.101-115, 2011.
DOI : 10.1016/0031-9422(95)91890-D

A. A?¨nouchea?¨nouche, R. J. Bayer, and M. Misset, Molecular phylogeny, diversification and character evolution in Lupinus (Fabaceae) with special attention to Mediterranean and African lupines, Plant Syst. Evol, vol.246, 2004.

E. Coissac, P. M. Hollingsworth, S. Lavergne, and P. Taberlet, From barcodes to genomes: extending the concept of DNA barcoding, Molecular Ecology, vol.96, issue.Suppl. 1, pp.1423-1431, 2016.
DOI : 10.1093/aob/mci170

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nature Methods, vol.9, issue.4, pp.357-366, 2012.
DOI : 10.1093/bioinformatics/btp352

URL : http://europepmc.org/articles/pmc3322381?pdf=render

S. K. Wyman, R. K. Jansen, and J. L. Boore, Automatic annotation of organellar genomes with DOGMA, Bioinformatics, vol.20, issue.17, pp.3252-3257, 2004.
DOI : 10.1093/bioinformatics/bth352

URL : https://academic.oup.com/bioinformatics/article-pdf/20/17/3252/455701/bth352.pdf

M. Krzywinski, J. Schein, and I. Birol, Circos: An information aesthetic for comparative genomics, Genome Research, vol.19, issue.9, pp.1639-1645, 2009.
DOI : 10.1101/gr.092759.109

URL : http://genome.cshlp.org/content/19/9/1639.full.pdf

A. Pierleoni, P. L. Martelli, P. Fariselli, C. , and R. , BaCelLo: a Balanced subCellular Localization predictor, Protoc. Exch, vol.22, pp.408-424, 2007.
DOI : 10.1093/bioinformatics/btl222

URL : https://academic.oup.com/bioinformatics/article-pdf/22/14/e408/615167/btl222.pdf

M. Boden and J. Hawkins, Prediction of subcellular localization using sequence-biased recurrent networks, Bioinformatics, vol.253, issue.2, pp.2279-86, 2005.
DOI : 10.1016/S0378-1119(00)00233-X

URL : https://academic.oup.com/bioinformatics/article-pdf/21/10/2279/546892/bti372.pdf

O. Emanuelsson, H. Nielsen, S. Brunak, V. Heijne, and G. , Predicting Subcellular Localization of Proteins Based on their N-terminal Amino Acid Sequence, Journal of Molecular Biology, vol.300, issue.4, pp.1005-1021, 2000.
DOI : 10.1006/jmbi.2000.3903

T. Blum, S. Briesemeister, and O. Kohlbacher, MultiLoc2: integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction, BMC Bioinformatics, vol.10, issue.1, p.274, 2009.
DOI : 10.1186/1471-2105-10-274

URL : https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-10-274?site=bmcbioinformatics.biomedcentral.com

I. Small, N. Peeters, F. Legeai, and C. Lurin, Predotar: A tool for rapidly screening proteomes forN-terminal targeting sequences, PROTEOMICS, vol.4, issue.6, pp.1581-90, 2004.
DOI : 10.1002/pmic.200300776

F. Michel and J. L. Ferat, Structure and Activities of Group II Introns, Annual Review of Biochemistry, vol.64, issue.1, pp.435-61, 1995.
DOI : 10.1146/annurev.bi.64.070195.002251

F. Michel, U. Kazuhiko, and O. Haruo, Comparative and functional anatomy of group II catalytic introns ??? a review, Gene, vol.82, issue.1, pp.5-30, 1989.
DOI : 10.1016/0378-1119(89)90026-7

K. Lehmann and U. Schmidt, Group II Introns: Structure and Catalytic Versatility of Large Natural Ribozymes, Critical Reviews in Biochemistry and Molecular Biology, vol.38, issue.3, pp.249-303, 2003.
DOI : 10.1080/713609236

S. Roy, M. Ueda, K. Kadowaki, and N. Tsutsumi, Different status of the gene for ribosomal protein S16 in the chloroplast genome during evolution of the genus Arabidopsis and closely related species, Genes & Genetic Systems, vol.85, issue.5, pp.319-345, 2010.
DOI : 10.1266/ggs.85.319

M. Kearse, R. Moir, and A. Wilson, Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data, Bioinformatics, vol.24, issue.8, pp.1647-1656, 2012.
DOI : 10.1093/molbev/msm092

URL : https://academic.oup.com/bioinformatics/article-pdf/28/12/1647/743484/bts199.pdf

Z. Yang, PAML 4: Phylogenetic Analysis by Maximum Likelihood, Molecular Biology and Evolution, vol.24, issue.8, pp.1586-91, 2007.
DOI : 10.1093/molbev/msm088

URL : https://academic.oup.com/mbe/article-pdf/24/8/1586/3853532/msm088.pdf

E. Paradis, J. Claude, and K. Strimmer, APE: Analyses of Phylogenetics and Evolution in R language, Bioinformatics, vol.20, issue.2, pp.289-90, 2004.
DOI : 10.1093/bioinformatics/btg412

URL : https://academic.oup.com/bioinformatics/article-pdf/20/2/289/533578/btg412.pdf

M. Kimura, A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, Journal of Molecular Evolution, vol.206, issue.5, Nov., pp.111-131, 1980.
DOI : 10.1038/scientificamerican1179-98

Z. Yang and R. Nielsen, Estimating Synonymous and Nonsynonymous Substitution Rates Under Realistic Evolutionary Models, Molecular Biology and Evolution, vol.17, issue.1, pp.32-43, 2000.
DOI : 10.1093/oxfordjournals.molbev.a025888

URL : https://academic.oup.com/mbe/article-pdf/17/1/32/2975778/mbev_17_01_0032.pdf

S. Kurtz, J. V. Choudhuri, E. Ohlebusch, C. Schleiermacher, J. Stoye et al., REPuter: the manifold applications of repeat analysis on a genomic scale, Nucleic Acids Research, vol.29, issue.22, pp.4633-4675, 2001.
DOI : 10.1093/nar/29.22.4633

C. Saski, S. Lee, and H. Daniell, Complete Chloroplast Genome Sequence of Glycine max and Comparative Analyses with other Legume Genomes, Plant Molecular Biology, vol.20, issue.4, pp.309-331, 2005.
DOI : 10.1093/oxfordjournals.molbev.a025645

C. Mayer, Phobos: Highly Accurate Search for Perfect and Imperfect Tandem Repeats in Complete Genomes by, 2007.

S. Rozen and H. Skaletsky, Primer3 on the WWW for General Users and for Biologist Programmers, Methods Mol. Biol. Clifton NJ, vol.132, pp.365-86, 2000.
DOI : 10.1385/1-59259-192-2:365

URL : http://www.flyrnai.org/supplement/MMB-RosenSkaletsky.pdf

K. Katoh, K. Misawa, K. Kuma, and T. Miyata, MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform, Nucleic Acids Research, vol.30, issue.14, pp.3059-3066, 2002.
DOI : 10.1093/nar/gkf436

URL : https://academic.oup.com/nar/article-pdf/30/14/3059/9488148/gkf436.pdf

J. Felsenstein, Confidence limits on phylogenies: an approach using the bootstrap, Evolution, pp.39-783, 1985.
DOI : 10.1111/j.1558-5646.1985.tb00420.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1558-5646.1985.tb00420.x

D. Posada, jModelTest: Phylogenetic Model Averaging, Molecular Biology and Evolution, vol.39, issue.3, pp.1253-1259, 2008.
DOI : 10.1007/BF00160155

URL : https://academic.oup.com/mbe/article-pdf/25/7/1253/3543852/msn083.pdf

K. Tamura, G. Stecher, D. Peterson, A. Filipski, and S. Kumar, MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0, Molecular Biology and Evolution, vol.87, issue.12, pp.2725-2734, 2013.
DOI : 10.1128/JVI.02478-12

URL : https://academic.oup.com/mbe/article-pdf/30/12/2725/19498310/mst197.pdf

R. D. Finn, A. Bateman, and J. Clements, Pfam: the protein families database, Nucleic Acids Research, vol.42, issue.D1, pp.222-252, 2014.
DOI : 10.1093/nar/gks1200

URL : https://hal.archives-ouvertes.fr/hal-01294685

H. S. Yoon, J. D. Hackett, C. Ciniglia, G. Pinto, and D. Bhattacharya, A Molecular Timeline for the Origin of Photosynthetic Eukaryotes, Molecular Biology and Evolution, vol.21, issue.5, pp.809-827, 2004.
DOI : 10.1073/pnas.242379899

J. F. Allen, Why Chloroplasts and Mitochondria Contain Genomes, Comparative and Functional Genomics, vol.242, issue.1, pp.31-37, 2003.
DOI : 10.1111/j.1432-1033.1996.0081r.x

URL : http://doi.org/10.1002/cfg.245

J. F. Allen, S. Puthiyaveetil, J. Strö-m, A. , and C. A. , Energy transduction anchors genes in organelles, BioEssays, vol.42, issue.4, pp.426-461, 2005.
DOI : 10.1016/S1360-1385(02)00005-5

J. F. Allen, Why chloroplasts and mitochondria retain their own genomes and genetic systems: Colocation for redox regulation of gene expression, Proceedings of the National Academy of Sciences, vol.44, issue.1-2, pp.10231-10239, 2015.
DOI : 10.1128/MMBR.05024-11

T. Pfannschmidt, A. Nilsson, A. Tullberg, G. Link, A. et al., Direct Transcriptional Control of the Chloroplast Genes psbA and psaAB Adjusts Photosynthesis to Light Energy Distribution in Plants, IUBMB Life, vol.48, issue.3, pp.271-277, 1999.
DOI : 10.1080/713803507

U. Maier, S. Zauner, and C. Woehle, Massively Convergent Evolution for Ribosomal Protein Gene Content in Plastid and Mitochondrial Genomes, Genome Biology and Evolution, vol.7, issue.12, pp.2318-2347, 2013.
DOI : 10.1371/journal.pone.0036972

URL : https://academic.oup.com/gbe/article-pdf/5/12/2318/17918232/evt181.pdf

S. Kikuchi, J. Bédard, and M. Hirano, Uncovering the Protein Translocon at the Chloroplast Inner Envelope Membrane, Science, vol.37, issue.2, pp.571-574, 2013.
DOI : 10.1093/oxfordjournals.pcp.a028920

W. Dong, C. Xu, and C. Li, ycf1, the most promising plastid DNA barcode of land plants, Scientific Reports, vol.5, issue.1, p.8348
DOI : 10.1093/gbe/evt063

URL : http://www.nature.com/articles/srep08348.pdf

W. Dong, J. Liu, J. Yu, L. Wang, and S. Zhou, Highly Variable Chloroplast Markers for Evaluating Plant Phylogeny at Low Taxonomic Levels and for DNA Barcoding, PLoS ONE, vol.25, issue.4, p.35071, 2012.
DOI : 10.1371/journal.pone.0035071.s004

URL : http://doi.org/10.1371/journal.pone.0035071

D. L. Swofford, PAUP*: Phylogenetic Analysis Using Parsimony (and other methods) 4, 2001.

L. A. Johnson and D. E. Soltis, Assessing Congruence: Empirical Examples from Molecular Data, Molecular Systematics of Plants II, pp.297-348, 1998.
DOI : 10.1007/978-1-4615-5419-6_11

C. S. Drummond, Diversification of Lupinus (Leguminosae) in the western New World: Derived evolution of perennial life history and colonization of montane habitats, Molecular Phylogenetics and Evolution, vol.48, issue.2, pp.408-429, 2008.
DOI : 10.1016/j.ympev.2008.03.009

M. E. Cosner, R. K. Jansen, J. D. Palmer, and S. R. Downie, The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families, Current Genetics, vol.31, issue.5, pp.419-429, 1997.
DOI : 10.1007/s002940050225

B. G. Milligan, J. N. Hampton, P. , and J. D. , Dispersed repeats and structural reorganization in subclover chloroplast DNA, Mol. Biol. Evol, vol.6, pp.355-68, 1989.

Y. Ogihara, T. Terachi, and T. Sasakuma, Intramolecular recombination of chloroplast genome mediated by short direct-repeat sequences in wheat species., Proceedings of the National Academy of Sciences, vol.85, issue.22, pp.8573-8577, 1988.
DOI : 10.1073/pnas.85.22.8573

URL : http://www.pnas.org/content/85/22/8573.full.pdf

M. S. Akkaya, A. A. Bhagwat, and P. B. Cregan, Length polymorphisms of simple sequence repeat DNA in soybean, Genetics, vol.132, pp.1131-1140, 1992.

F. Desiderio, E. Bitocchi, and E. Bellucci, Chloroplast Microsatellite Diversity in Phaseolus vulgaris, Frontiers in Plant Science, vol.3, 2013.
DOI : 10.3389/fpls.2012.00312

URL : http://journal.frontiersin.org/article/10.3389/fpls.2012.00312/pdf

L. Pan, Y. Li, R. Guo, H. Wu, Z. Hu et al., Applications in Plant Sciences, vol.27, issue.3, p.1300075, 2014.
DOI : 10.1007/s11032-009-9364-x

W. Powell, M. Morgante, and C. Andre, Hypervariable microsatellites provide a general source of polymorphic DNA markers for the chloroplast genome, Current Biology, vol.5, issue.9, pp.1023-1029, 1995.
DOI : 10.1016/S0960-9822(95)00206-5

J. Provan, W. Powell, and P. M. Hollingsworth, Chloroplast microsatellites: new tools for studies in plant ecology and evolution, Trends in Ecology & Evolution, vol.16, issue.3, pp.142-147, 2001.
DOI : 10.1016/S0169-5347(00)02097-8

J. Provan, J. R. Russell, A. Booth, P. , and W. , Molecular Ecology, vol.277, issue.3, pp.505-511, 1999.
DOI : 10.1126/science.277.5329.1063

S. Maroof, M. A. Biyashev, R. M. Yang, G. P. Zhang, Q. Allard et al., Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics., Proceedings of the National Academy of Sciences, vol.91, issue.12, pp.5466-70, 1994.
DOI : 10.1073/pnas.91.12.5466

K. Wu and S. D. Tanksley, Abundance, polymorphism and genetic mapping of microsatellites in rice, MGG Molecular & General Genetics, vol.18, issue.1-2, pp.225-235, 1993.
DOI : 10.1007/BF00280220

F. Burki, The Eukaryotic Tree of Life from a Global Phylogenomic Perspective, Cold Spring Harbor Perspectives in Biology, vol.6, issue.5, p.16147, 2014.
DOI : 10.1101/cshperspect.a016147

URL : http://cshperspectives.cshlp.org/content/6/5/a016147.full.pdf

F. Leliaert, D. R. Smith, and H. Moreau, Phylogeny and Molecular Evolution of the Green Algae, Critical Reviews in Plant Sciences, vol.45, issue.1, pp.1-46, 2012.
DOI : 10.1111/j.1529-8817.2009.00731.x

URL : https://hal.archives-ouvertes.fr/hal-01590252