L. Zhao, S. Lo, Y. Zhang, H. Sun, G. Tan et al., Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Crystals, pp.373-377, 2014.
DOI : 10.1021/ja1013745

G. J. Snyder and E. S. Toberer, Complex thermoelectric materials, Nature Materials, vol.91, issue.2, pp.105-114, 2008.
DOI : 10.1557/mrs2006.46

T. Terry, Thermoelectric Materials, Phenomena, and Applications: A Bird's Eye View, MRS Bull, p.31, 2006.

T. Takabatake, K. Suekuni, T. Nakayama, and E. Kaneshita, Phonon-glass electron-crystal thermoelectric clathrates: Experiments and theory, Reviews of Modern Physics, vol.213, issue.2, pp.669-716, 2014.
DOI : 10.1103/PhysRevB.85.214304

W. Zhao, P. Wei, Q. Zhang, C. Dong, L. Liu et al., Enhanced Thermoelectric Performance in Barium and Indium Double-Filled Skutterudite Bulk Materials via Orbital Hybridization Induced by Indium Filler, Journal of the American Chemical Society, vol.131, issue.10, pp.3713-3720, 2009.
DOI : 10.1021/ja8089334

L. Wu, Q. Meng, C. Jooss, J. Zheng, H. Inada et al., Origin of Phonon Glass-Electron Crystal Behavior in Thermoelectric Layered Cobaltate, Origin of Phonon Glass?Electron Crystal Behavior in Thermoelectric Layered Cobaltate, pp.5728-5736, 2013.
DOI : 10.1007/978-1-4757-4406-4

G. J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B. B. Iversen, Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties, Nature Materials, vol.39, issue.7, pp.458-463, 2004.
DOI : 10.1524/zkri.216.2.71.20335

J. R. Sootsman, H. Kong, C. Uher, J. J. Angelo, C. Wu et al., Large Enhancements in the Thermoelectric Power Factor of Bulk PbTe at High Temperature by Synergistic Nanostructuring, Angewandte Chemie International Edition, vol.102, issue.45, pp.8618-8622, 2008.
DOI : 10.1557/mrs2006.47

K. Biswas, J. He, I. D. Blum, C. Wu, T. P. Hogan et al., High-performance bulk thermoelectrics with all-scale hierarchical architectures, Nature, vol.29, issue.7416, pp.414-418, 2012.
DOI : 10.1515/znb-1974-9-1012

L. D. Hicks and M. S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit, Physical Review B, vol.56, issue.19, pp.12727-12731, 1993.
DOI : 10.1016/0038-1098(85)90546-0

Y. Pei, X. Shi, A. Lalonde, H. Wang, L. Chen et al., Convergence of electronic bands for high performance bulk thermoelectrics, Nature, vol.29, issue.7345, pp.66-69, 2011.
DOI : 10.1515/znb-1974-9-1012

A. Banik, U. S. Shenoy, S. Anand, U. V. Waghmare, and K. Biswas, Mg Alloying in SnTe Facilitates Valence Band Convergence and Optimizes Thermoelectric Properties, Chemistry of Materials, vol.27, issue.2, pp.581-587, 2015.
DOI : 10.1021/cm504112m

Y. Gelbstein and J. Davidow, Te based thermoelectric alloys, Phys. Chem. Chem. Phys., vol.23, issue.7, pp.20120-20126, 2014.
DOI : 10.1007/978-1-4684-8607-0

Y. Rosenberg, Y. Gelbstein, and M. P. Dariel, Phase separation and thermoelectric properties of the Pb0.25Sn0.25Ge0.5Te compound, Journal of Alloys and Compounds, vol.526, pp.31-38, 2012.
DOI : 10.1016/j.jallcom.2012.02.099

A. Banik, B. Vishal, S. Perumal, R. Datta, and K. Biswas, Te: phonon scattering via layered intergrowth nanostructures, Energy Environ. Sci., vol.3, issue.6, pp.2011-2019
DOI : 10.1039/C5TA01667C

Y. Gelbstein, Phase morphology effects on the thermoelectric properties of Pb0.25Sn0.25Ge0.5Te, Acta Materialia, vol.61, issue.5, pp.61-1499, 2013.
DOI : 10.1016/j.actamat.2012.11.027

K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck et al., Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit, Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit, pp.818-821, 2004.
DOI : 10.1126/science.1092963

Z. Chen, B. Ge, W. Li, S. Lin, J. Shen et al., Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics, Nature Communications, vol.29, pp.2017-13828
DOI : 10.1515/znb-1974-9-1012

K. Kirievsky, M. Shlimovich, D. Fuks, and Y. Gelbstein, An ab initio study of the thermoelectric enhancement potential in nano-grained TiNiSn, Phys. Chem. Chem. Phys., vol.99, issue.107, 2014.
DOI : 10.1063/1.2188251

Y. Gelbstein, J. Tunbridge, R. Dixon, M. J. Reece, H. Ning et al., Physical, Mechanical, and Structural Properties of Highly Efficient Nanostructured n- and p-Silicides for Practical Thermoelectric Applications, Journal of Electronic Materials, vol.41, issue.6, pp.1703-1711, 2014.
DOI : 10.1007/s11664-011-1879-3

B. Du, F. Gucci, H. Porwal, S. Grasso, A. Mahajan et al., Flash spark plasma sintering of magnesium silicide stannide with improved thermoelectric properties, J. Mater. Chem. C, vol.33, issue.6, pp.1514-1521, 2017.
DOI : 10.1016/S0022-3697(72)80273-7

A. P. Gonçalves, E. B. Lopes, O. Rouleau, and C. Godart, Conducting glasses as new potential thermoelectric materials: the Cu???Ge???Te case, J. Mater. Chem., vol.3, issue.340, pp.1516-1521, 2010.
DOI : 10.1063/1.123596

A. P. Gonçalves, G. Delaizir, E. B. Lopes, L. M. Ferreira, O. Rouleau et al., Chalcogenide Glasses as Prospective Thermoelectric Materials, Journal of Electronic Materials, vol.59, issue.5, pp.1015-1017, 2011.
DOI : 10.1366/0003702052940387

P. Lucas, C. Conseil, Z. Yang, Q. Hao, S. Cui et al., Thermoelectric bulk glasses based on the Cu???As???Te???Se system, Thermoelectric Bulk Glasses Based on the Cu?As?Te?Se System, pp.8917-8925, 2013.
DOI : 10.1016/S0022-3093(87)80685-3

URL : https://hal.archives-ouvertes.fr/hal-00860123

J. B. Vaney, G. Delaizir, E. Alleno, O. Rouleau, A. Piarristeguy et al., A comprehensive study of the crystallization of Cu???As???Te glasses: microstructure and thermoelectric properties, Journal of Materials Chemistry A, vol.23, issue.28, pp.8190-8200, 2013.
DOI : 10.1063/1.1702301

URL : https://hal.archives-ouvertes.fr/hal-00824217

S. Cui, C. Boussard-plédel, L. Calvez, F. Rojas, K. Chen et al., Comprehensive study of tellurium based glass ceramics for thermoelectric application, Advances in Applied Ceramics, vol.34, issue.sup1, pp.42-47, 2015.
DOI : 10.1103/PhysRev.75.972

URL : https://hal.archives-ouvertes.fr/hal-01231165

J. B. Vaney, A. Piarristeguy, A. Pradel, E. Alleno, B. Lenoir et al., Thermal stability and thermoelectric properties of CuxAs40???xTe60???ySey semiconducting glasses, Journal of Solid State Chemistry, vol.203, pp.212-217, 2013.
DOI : 10.1016/j.jssc.2013.04.015

URL : https://hal.archives-ouvertes.fr/hal-00824047

Z. Yang, A. A. Wilhelm, and P. Lucas, High-Conductivity Tellurium-Based Infrared Transmitting Glasses and their Suitability for Bio-Optical Detection, Journal of the American Ceramic Society, vol.93, pp.1941-1944, 2010.
DOI : 10.1111/j.1551-2916.2010.03686.x

M. Munoz and S. Pasternak, The Time-Resolved and Extreme Conditions XAS (TEXAS) Facility at the European Synchrotron Radiation Facility: The General-Purpose EXAFS Bending-Magnet Beamline BM23, J. Synchrotron Radiat, vol.22, pp.1548-1554, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01573036

M. G. Kim, D. Kim, T. Kim, S. Park, G. Kwon et al., Unusual Li-ion storage through anionic redox processes of bacteria-driven tellurium nanorods, J. Mater. Chem. A, vol.2, issue.33, pp.16978-16987, 2015.
DOI : 10.1039/b823474d

Y. Joly, X-ray absorption near-edge structure calculations beyond the muffin-tin approximation, Physical Review B, vol.6, issue.12, p.125120, 2001.
DOI : 10.1107/S0909049599010845

S. Y. Savrasov and D. Savrasov, Full-potential linear-muffin-tin-orbital method for calculating total energies and forces, Physical Review B, vol.35, issue.19, pp.12181-12195, 1992.
DOI : 10.1063/1.1713214

G. Kresse and J. Furthmüller, total-energy calculations using a plane-wave basis set, Physical Review B, vol.2, issue.16, pp.11169-11186, 1996.
DOI : 10.1016/0927-0256(94)90105-8

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B, vol.9, issue.3, pp.1758-1775, 1999.
DOI : 10.1103/PhysRevB.55.13479

H. Nowotny, S. Kashida, W. Shimosaka, M. Mori, and D. Yoshimura, Die Krystallstructur von Cu2Te Valence Band Photoemission Study of the Copper Chalcogenide Compounds, Cu2S, Cu2Se and Cu2Te, J. Phys. Chem. Solids, vol.37, issue.64, pp.40-40, 1946.

R. F. Bader, Atoms in Molecules, Encyclopedia of Computational Chemistry, 2002.

W. Tang, E. Sanville, and G. Henkelman, A grid-based Bader analysis algorithm without lattice bias, Journal of Physics: Condensed Matter, vol.21, issue.8, p.84204, 2009.
DOI : 10.1088/0953-8984/21/8/084204

S. Wei and A. Zunger, states in II-VI semiconductors, Physical Review B, vol.56, issue.1, pp.8958-8981, 1988.
DOI : 10.1103/PhysRevLett.56.2755

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide:??????An LSDA+U study, Physical Review B, vol.50, issue.3, pp.1505-1509, 1998.
DOI : 10.1103/PhysRevB.50.5041

E. P. Domashevskaya, V. V. Gorbachev, V. A. Terekhov, V. M. Kashkarov, E. V. Panfilova et al., XPS and XES emission investigations of d???p resonance in some copper chalcogenides, Journal of Electron Spectroscopy and Related Phenomena, vol.114, issue.116, pp.114-116, 2001.
DOI : 10.1016/S0368-2048(00)00406-0

L. E. Orgel, 843. Stereochemistry of metals of the B sub-groups. Part I. Ions with filled d-electron shells, Journal of the Chemical Society (Resumed), pp.4186-4190, 1958.
DOI : 10.1039/jr9580004186

J. Z. Liu and P. C. Taylor, A General Structural Model for Semiconducting Glasses. Solid State Commun, pp.81-85, 1989.

M. Kastner, D. Adler, and H. Fritzsche, Valence-Alternation Model for Localized Gap States in Lone-Pair Semiconductors, Physical Review Letters, vol.21, issue.22, pp.1504-1507, 1976.
DOI : 10.1016/0022-3093(76)90099-5

A. V. Kolobov, On the origin of p-type conductivity in amorphous chalcogenides, Journal of Non-Crystalline Solids, vol.198, issue.200, pp.728-731, 1996.
DOI : 10.1016/0022-3093(96)00119-6