P. Brissot, Iron Overload: Better Understanding, Better Care], Rev Prat, vol.65, issue.10, pp.1305-1316, 2015.

C. Pigeon, G. Ilyin, B. Courselaud, P. Leroyer, B. Turlin et al., A New Mouse Liver-specific Gene, Encoding a Protein Homologous to Human Antimicrobial Peptide Hepcidin, Is Overexpressed during Iron Overload, Journal of Biological Chemistry, vol.46, issue.11, pp.7811-7820, 2001.
DOI : 10.1074/jbc.M008922200

G. Nicolas, M. Bennoun, I. Devaux, C. Beaumont, B. Grandchamp et al., Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice, Proceedings of the National Academy of Sciences, vol.96, issue.4, pp.8780-8785, 2001.
DOI : 10.1073/pnas.96.4.1579

URL : https://hal.archives-ouvertes.fr/inserm-00331349

T. Ganz, Systemic Iron Homeostasis, Physiological Reviews, vol.93, issue.4, pp.1721-1762, 2013.
DOI : 10.1152/physrev.00008.2013

M. Muckenthaler, B. Galy, and M. Hentze, Systemic Iron Homeostasis and the Iron-Responsive Element/Iron-Regulatory Protein (IRE/IRP) Regulatory Network, Annual Review of Nutrition, vol.28, issue.1, pp.197-213, 2008.
DOI : 10.1146/annurev.nutr.28.061807.155521

S. Clark, Iron Deficiency Anemia, Nutrition in Clinical Practice, vol.23, issue.2, pp.128-169, 2008.
DOI : 10.1093/ndt/gfi253

P. Adams, Y. Deugnier, R. Moirand, and P. Brissot, The relationship between iron overload, clinical symptoms, and age in 410 patients with genetic hemochromatosis, Hepatology, vol.25, issue.1, pp.162-168, 1997.
DOI : 10.1002/hep.510250130

J. Porter and M. Garbowski, The Pathophysiology of Transfusional Iron Overload, Hematology/Oncology Clinics of North America, vol.28, issue.4, pp.683-701, 2014.
DOI : 10.1016/j.hoc.2014.04.003

A. Martelli, H. L. Puccio, and G. Steven, Dysregulation of cellular iron metabolism in Friedreich ataxia: from primary iron-sulfur cluster deficit to mitochondrial iron accumulation The global prevalence of anaemia in 2011: WHO global database on anaemia World Health Organization, Front Pharmacol, vol.5, issue.10, pp.130-141, 2014.

A. Alkhateeb and J. Connor, Nuclear ferritin: A new role for ferritin in cell biology, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1800, issue.8, pp.793-800, 2010.
DOI : 10.1016/j.bbagen.2010.03.017

C. Pigeon, B. Turlin, T. Iancu, P. Leroyer, L. Lan et al., Carbonyl-iron supplementation induces hepatocyte nuclear changes in BALB/CJ male mice The identification of ferritin in the nucleus of K562 cells, and investigation of a possible role in the transcriptional regulation of adult beta-globin gene expression Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes, J Hepatol. J Cell Sci. Nature chemical biology, vol.301128, issue.141, pp.926-34825, 1999.

Y. Wu, R. Brosh, J. Franke, S. Henriques, J. Fenech et al., DNA helicase and helicase-nuclease enzymes with a conserved iron-sulfur cluster Iron and genome stability: an update, Nucleic Acids Res. Mutat Res, vol.40733, issue.1012, pp.4247-6092, 2012.

C. Zhang, A. Koc, L. Wheeler, C. Mathews, and G. Merrill, Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools, Protein Cell. J Biol Chem, vol.5279, issue.181, pp.750-60223, 2004.

L. Skoog and B. Nordenskjold, Effects of Hydroxyurea and 1-beta-D-Arabinofuranosyl-cytosine on Deoxyribonucleotide Pools in Mouse Embryo Cells, European Journal of Biochemistry, vol.241, issue.1, pp.81-90, 1971.
DOI : 10.1016/0003-2697(70)90096-5

R. Adams, S. Berryman, and A. Thomson, Deoxyribonucleoside triphosphate pools in synchronized and drug-inhibited L929 cells, Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, vol.240, issue.4, pp.455-62, 1971.
DOI : 10.1016/0005-2787(71)90702-7

R. Snyder, The role of deoxynucleoside triphosphate pools in the inhibition of DNA-excision repair and replication in human cells by hydroxyurea, Mutation Research/DNA Repair Reports, vol.131, issue.3-4, pp.3-4163, 1984.
DOI : 10.1016/0167-8817(84)90057-9

V. Gandhi, W. Plunkett, H. Kantarjian, M. Talpaz, L. Robertson et al., Cellular pharmacodynamics and plasma pharmacokinetics of parenterally infused hydroxyurea during a phase I clinical trial in chronic myelogenous leukemia., Journal of Clinical Oncology, vol.16, issue.7, pp.2321-2352, 1998.
DOI : 10.1200/JCO.1998.16.7.2321

D. Kumar, J. Viberg, A. Nilsson, A. Chabes, H. Arakawa et al., Highly mutagenic and severely imbalanced dNTP pools can escape detection by the S-phase checkpoint, Tajmir-Riahi HA. A Comparative study of Fe(II) and, pp.3975-83, 2010.
DOI : 10.1093/nar/gkq128

C. Bertoncini, F. Galembeck, M. Calio, and A. Carbonel, Preferential localization of iron in the chromatin of Fe-enriched cells linked toDNA cleavage sites and control of carcinogenesis, J Cancer Sci Ther, issue.8, pp.2016213-2016218

M. Marsden and U. Laemmli, Metaphase chromosome structure: Evidence for a radial loop model, Cell, vol.17, issue.4, pp.849-58, 1979.
DOI : 10.1016/0092-8674(79)90325-8

P. Rai, T. Cole, D. Wemmer, and S. Linn, Localization of Fe2+ at an RTGR sequence within a DNA duplex explains preferential cleavage by Fe2+ and H2O211Edited by M. F. Summers, Journal of Molecular Biology, vol.312, issue.5, pp.1089-101, 2001.
DOI : 10.1006/jmbi.2001.5010

E. Henle, Z. Han, N. Tang, P. Rai, Y. Luo et al., -mediated Fenton Reactions Has Possible Biological Implications, Journal of Biological Chemistry, vol.266, issue.2, pp.962-71, 1999.
DOI : 10.1074/jbc.273.24.14683

A. Mainous, R. Wright, M. Hulihan, W. Twal, C. Mclaren et al., Elevated transferrin saturation, health-related quality of life and telomere length Telomere length and elevated iron: the influence of phenotype and HFE genotype The influence of oxidative stress induced by iron on telomere length, Biometals. Am J Hematol. Kepinska M Environ Toxicol Pharmacol, vol.278840, issue.323, pp.135-41492, 2013.

M. Troadec, B. Courselaud, L. Detivaud, C. Haziza-pigeon, P. Leroyer et al., Iron overload promotes Cyclin D1 expression and alters cell cycle in mouse hepatocytes, Journal of Hepatology, vol.44, issue.2, pp.391-400, 2006.
DOI : 10.1016/j.jhep.2005.07.033

N. Chenoufi, O. Loreal, B. Drenou, S. Cariou, N. Hubert et al., Iron may induce both DNA synthesis and repair in rat hepatocytes stimulated by EGF/pyruvate Deugnier Y, Turlin B. Iron and hepatocellular carcinoma Preneoplastic significance of hepatic iron-free foci in genetic hemochromatosis: a study of 185 patients Hepatocyte iron loading capacity is associated with differentiation and repression of motility in the HepaRG cell line, J Hepatol. J Gastroenterol Hepatol. Hepatology. Genomics, vol.26161887, issue.371, pp.650-8491, 1993.

N. Le and D. Richardson, The role of iron in cell cycle progression and the proliferation of neoplastic cells, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol.1603, issue.1, pp.31-46, 2002.
DOI : 10.1016/S0304-419X(02)00068-9

J. Gao, D. Richardson, K. Kulp, S. Green, and P. Vulliet, The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents, IV: The mechanisms involved in inhibiting cell-cycle progression Iron deprivation inhibits cyclin-dependent kinase activity and decreases cyclin D/CDK4 protein levels in asynchronous MDA-MB-453 human breast cancer cells, Blood. Exp Cell Res, vol.98229, issue.401, pp.842-5060, 1996.

H. Yu, P. Guo, X. Xie, Y. Wang, and G. Chen, Ferroptosis, a new form of cell death, and its relationships with tumourous diseases, Journal of Cellular and Molecular Medicine, vol.5, issue.4, pp.648-57, 2017.
DOI : 10.3389/fonc.2015.00131

A. Brault, C. Rallis, V. Normant, J. Garant, J. Bahler et al., Php4 Is a Key Player for Iron Economy in Meiotic and Sporulating Cells Key function for the CCAAT-binding factor Php4 to regulate gene expression in response to iron deficiency in fission yeast Transcripts of ceruloplasmin but not hepcidin, both major iron metabolism genes, exhibit a decreasing pattern along the portocentral axis of mouse liver, G3 (Bethesda). Eukaryot Cell. Biochim Biophys Acta, vol.671782, issue.4334, pp.3077-95493, 2008.

S. Kuvibidila, C. Porretta, and S. Baliga, Aneuploidy assessed by DNA index influences the effect of iron status on plasma and/or supernatant cytokine levels and progression of cells through the cell cycle in a mouse model, Cytokine, vol.65, issue.2, pp.175-83, 2014.
DOI : 10.1016/j.cyto.2013.11.005

J. Imlay, Pathways of Oxidative Damage, Annual Review of Microbiology, vol.57, issue.1, pp.395-418, 2003.
DOI : 10.1146/annurev.micro.57.030502.090938

V. Abalea, J. Cillard, M. Dubos, O. Sergent, P. Cillard et al., Repair of iron-induced DNA oxidation by the flavonoid myricetin in primary rat hepatocyte cultures, Free Radical Biology and Medicine, vol.26, issue.11-12, pp.11-121457, 1999.
DOI : 10.1016/S0891-5849(99)00010-6

X. Gao, J. Campian, M. Qian, X. Sun, and J. Eaton, Mitochondrial DNA Damage in Iron Overload, Journal of Biological Chemistry, vol.121, issue.8, pp.4767-75, 2009.
DOI : 10.1016/j.dnarep.2008.03.012

Y. Zhong, J. Onuki, T. Yamasaki, O. Ogawa, S. Akatsuka et al., Genome-wide analysis identifies a tumor suppressor role for aminoacylase 1 in iron-induced rat renal cell carcinoma, Carcinogenesis, vol.30, issue.1, pp.158-64, 2009.
DOI : 10.1093/carcin/bgn255

M. Kew, Hepatic Iron Overload and Hepatocellular Carcinoma, Liver Cancer, vol.3, issue.1, pp.31-40, 2014.
DOI : 10.1159/000343856

N. Funakoshi, I. Chaze, A. Alary, G. Tachon, S. Cunat et al., The role of genetic factors in patients with hepatocellular carcinoma and iron overload - a prospective series of 234 patients, Liver International, vol.115, issue.216-7, pp.746-54, 2016.
DOI : 10.1007/s00439-004-1166-y

H. Moukhadder, R. Halawi, M. Cappellini, A. Taher, M. Elmberg et al., Hepatocellular carcinoma as an emerging morbidity in the thalassemia syndromes: A comprehensive review. Cancer. 2016. 53 Cancer risk in patients with hereditary hemochromatosis and in their first-degree relatives Decreased cardiovascular and extrahepatic cancer-related mortality in treated patients with mild HFE hemochromatosis, SD. p53 mutations in british patients with hepatocellular carcinoma: clustering in genetic hemochromatosis, pp.1733-41682, 1999.

S. Hussain, K. Raja, P. Amstad, M. Sawyer, L. Trudel et al., Increased p53 mutation load in nontumorous human liver of wilson disease and hemochromatosis: oxyradical overload diseases Sister-chromatid exchanges in beta-thalassaemic patients under conditions of in vivo and in vitro depletion of folic acid, Proc Natl Acad Sci U S A. Mutat Res, vol.97282, issue.58, pp.12770-5213, 1992.

S. Al-sweedan, O. Khabour, and R. Isam, Genotoxicity assessment in patients with thalassemia minor, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol.744, issue.2
DOI : 10.1016/j.mrgentox.2012.02.010

G. Cote and S. Papadakou-lagoyanni, Beta-thalassaemia: increased chromosomal anomalies in lymphocyte cultures., Journal of Medical Genetics, vol.16, issue.1, pp.52-57, 1979.
DOI : 10.1136/jmg.16.1.52

C. Mcdonald, L. Ostini, D. Wallace, A. John, D. Watters et al., Iron loading and oxidative stress in the Atm-/- mouse liver, AJP: Gastrointestinal and Liver Physiology, vol.300, issue.4, pp.554-60, 2011.
DOI : 10.1152/ajpgi.00486.2010

R. Shackelford, Y. Fu, R. Manuszak, T. Brooks, A. Sequeira et al., Oxidative stress, mitochondrial abnormalities and antioxidant defense in Ataxia-telangiectasia, Bloom syndrome and Nijmegen breakage syndrome Iron chelators reduce chromosomal breaks in ataxia-telangiectasia cells, Redox Biol. DNA Repair (Amst), vol.115, issue.6211, pp.375-831327, 2006.

S. Adachi, K. Takemoto, T. Hirosue, and Y. Hosogai, Spontaneous and 2-nitropropane induced levels of 8-hydroxy-2'-deoxyguanosine in liver DNA of rats fed iron-deficient or manganese- and copper-deficient diets, Carcinogenesis, vol.14, issue.2, pp.265-273, 1993.
DOI : 10.1093/carcin/14.2.265

P. Walter, M. Knutson, A. Paler-martinez, S. Lee, Y. Xu et al., Iron deficiency and iron excess damage mitochondria and mitochondrial DNA in rats, Proceedings of the National Academy of Sciences, vol.49, issue.3 Suppl 2, pp.2264-2273, 2002.
DOI : 10.1136/gut.46.2.270

J. Diaz-castro, M. Alferez, I. Lopez-aliaga, T. Nestares, S. Granados et al., Influence of nutritional iron deficiency anemia on DNA stability and lipid peroxidation in rats, Nutrition, vol.24, issue.11-12, pp.11-121167, 2008.
DOI : 10.1016/j.nut.2008.05.012

T. Walter, Effect of Iron-Deficiency Anemia on Cognitive Skills and Neuromaturation in Infancy and Childhood, Food and Nutrition Bulletin, vol.63, issue.1, pp.104-114, 2003.
DOI : 10.1046/j.1471-4159.1994.63020709.x

M. Aslan, M. Horoz, A. Kocyigit, S. Ozgonul, H. Celik et al., Lymphocyte DNA damage and oxidative stress in patients with iron deficiency anemia Leukocyte DNA damage in children with iron deficiency anemia: effect of iron supplementation Genotoxicity assessment in iron deficiency anemia patients using sister chromatid exchanges and chromosomal aberrations assays Brissot P, Loreal O. Iron metabolism and related genetic diseases: A cleared land, keeping mysteries, Mutat Res. Eur J Pediatr. Mutat Res. J Hepatol, vol.60116975064, issue.702, pp.144-9951, 2006.

J. Feder, A. Gnirke, W. Thomas, Z. Tsuchihashi, D. Ruddy et al., A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis Phenotypic expression of a novel C282Y/R226G compound heterozygous state in HFE hemochromatosis: molecular dynamics and biochemical studies, Nature genetics. Blood Cells Mol Dis, vol.1352, issue.721, pp.399-40827, 1996.

C. Piubelli, A. Castagna, G. Marchi, M. Rizzi, F. Busti et al., Identification of new BMP6 pro-peptide mutations in patients with iron overload, American Journal of Hematology, vol.2, issue.6, pp.562-570, 2017.
DOI : 10.1136/bmj.2.5505.78

L. Kautz, V. Darnaud, F. Canonne-hergaux, H. Coppin, and M. Roth, Heterozygous Mutations in BMP6 Pro-peptide Lead to Inappropriate Hepcidin Synthesis and Moderate Iron Overload in Humans Lack of the bone morphogenetic protein BMP6 induces massive iron overload, Gastroenterology. Nat Genet, vol.15041, issue.34, pp.672-83478, 2009.

A. Roetto, G. Papanikolaou, M. Politou, F. Alberti, D. Girelli et al., Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis21-2. 77 The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22, Nat Genet. Nat Genet. Njajou OT Nature genetics, vol.332528, issue.783, pp.14-5213, 2000.

G. Montosi, A. Donovan, A. Totaro, C. Garuti, E. Pignatti et al., Autosomal-dominant hemochrom-atosis is associated with a mutation in the ferroportin (SLC11A3) gene, Journal of Clinical Investigation, vol.108, issue.4, pp.619-642, 2001.
DOI : 10.1172/JCI200113468

H. Miyajima and . Aceruloplasminemia, Aceruloplasminemia, Neuropathology, vol.29, issue.1, pp.83-90, 2015.
DOI : 10.1016/j.braindev.2007.01.001

O. Loreal, T. Cavey, E. Bardou-jacquet, P. Guggenbuhl, M. Ropert et al., Iron, hepcidin, and the metal connection Non-specific serum iron in thalassaemia: an abnormal serum iron fraction of potential toxicity Non-transferrin bound iron: a key role in iron overload and iron toxicity, Front Pharmacol. Br J Haematol. Biochim Biophys Acta, vol.5401820, issue.833, pp.128-82255, 1978.

P. Brissot, Optimizing the diagnosis and the treatment of iron overload diseases, Expert Review of Gastroenterology & Hepatology, vol.364, issue.15, pp.359-70, 2016.
DOI : 10.1111/liv.12893

L. Lan, C. Mosser, A. Ropert, M. Detivaud, L. Loustaud-ratti et al., Sex and Acquired Cofactors Determine Phenotypes of Ferroportin Disease, Gastroenterology, vol.140, issue.4, pp.1199-207, 2011.
DOI : 10.1053/j.gastro.2010.12.049

URL : https://hal.archives-ouvertes.fr/inserm-00554693

D. Aslan, K. Crain, E. Beutler, A. Iolascon, M. Apolito et al., A new case of human atransferrinemia with a previously undescribed mutation in the transferrin gene Microcytic anemia and hepatic iron overload in a child with compound heterozygous mutations in DMT1 (SCL11A2) A novel N491S mutation in the human SLC11A2 gene impairs protein trafficking and in association with the G212V mutation leads to microcytic anemia and liver iron overload, Acta Haematol. Blood. Bardou-Jacquet E Blood Cells Mol Dis, vol.11810747, issue.884, pp.244-7349, 2006.

S. Kono, Aceruloplasminemia: an update. International review of neurobiology, pp.125-51, 2013.

H. Schipper, Neurodegeneration with brain iron accumulation ??? Clinical syndromes and neuroimaging, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1822, issue.3, pp.350-60, 2012.
DOI : 10.1016/j.bbadis.2011.06.016

B. Zhou, S. Westaway, B. Levinson, M. Johnson, J. Gitschier et al., A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease, Nat Genet. Nat Genet, vol.2828, issue.924, pp.345-9350, 2001.

N. Morgan, S. Westaway, J. Morton, A. Gregory, P. Gissen et al., PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron, Nature Genetics, vol.5, issue.7, pp.752-756, 2006.
DOI : 10.1212/WNL.52.7.1472

S. Bottomley and M. Fleming, Sideroblastic Anemia, Hematology/Oncology Clinics of North America, vol.28, issue.4, pp.653-70, 2014.
DOI : 10.1016/j.hoc.2014.04.008

V. Visconte, H. Rogers, J. Singh, J. Barnard, M. Bupathi et al., SF3B1 haploinsufficiency leads to formation of ring sideroblasts in myelodysplastic syndromes SF3B1-mutated myelodysplastic syndrome with ring sideroblasts harbors more severe iron overload and corresponding over-erythropoiesis Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA), 98. Heeney MM, Finberg KE. Iron-refractory iron deficiency anemia (IRIDA), pp.3173-868, 2008.

E. Poggiali, F. Andreozzi, I. Nava, D. Consonni, G. Graziadei et al., The role of TMPRSS6 polymorphisms in iron deficiency anemia partially responsive to oral iron treatment, American Journal of Hematology, vol.118, issue.4, pp.306-315, 2015.
DOI : 10.1182/blood-2011-06-364034

D. Girelli, R. Corrocher, L. Bisceglia, O. Olivieri, D. Franceschi et al., Molecular basis for the recently described hereditary hyperferritinemia-cataract syndrome: a mutation in the ironresponsive element of ferritin L-subunit gene (the "Verona mutation"), Blood, vol.86, issue.11, pp.4050-4053, 1995.

C. Beaumont, P. Leneuve, I. Devaux, J. Scoazec, M. Berthier et al., Mutation in the iron responsive element of the L ferritin mRNA in a family with dominant hyperferritinaemia and cataract, Nature Genetics, vol.90, issue.4, pp.444-450, 1995.
DOI : 10.1038/ng0195-37

C. Kannengiesser, A. Jouanolle, G. Hetet, A. Mosser, F. Muzeau et al., A new missense mutation in the L ferritin coding sequence associated with elevated levels of glycosylated ferritin in serum and absence of iron overload, Haematologica, vol.94, issue.3, pp.335-344, 2009.
DOI : 10.3324/haematol.2008.000125

M. Troadec, D. Warner, J. Wallace, K. Thomas, G. Spangrude et al., Targeted deletion of the mouse Mitoferrin1 gene: from anemia to protoporphyria, Blood, vol.117, issue.20, pp.5494-502, 2011.
DOI : 10.1182/blood-2010-11-319483

URL : https://hal.archives-ouvertes.fr/hal-01120681

Y. Wang, N. Langer, G. Shaw, G. Yang, L. Li et al., Abnormal mitoferrin-1 expression in patients with erythropoietic protoporphyria, Experimental Hematology, vol.39, issue.7, pp.784-94, 2011.
DOI : 10.1016/j.exphem.2011.05.003

B. Fuqua, Y. Lu, D. Darshan, D. Frazer, S. Wilkins et al., The Multicopper Ferroxidase Hephaestin Enhances Intestinal Iron Absorption in Mice, PLoS ONE, vol.140, issue.6, p.98792, 2014.
DOI : 10.1371/journal.pone.0098792.s003

X. Nuttle, G. Giannuzzi, M. Duyzend, J. Schraiber, I. Narvaiza et al., Emergence of a Homo sapiens-specific gene family and chromosome 16p11.2 CNV susceptibility, Nature, vol.68, issue.7615, pp.205-214, 2016.
DOI : 10.1016/j.neuron.2010.10.006

L. Banci, F. Camponeschi, S. Ciofi-baffoni, and R. Muzzioli, Elucidating the Molecular Function of Human BOLA2 in GRX3-Dependent Anamorsin Maturation Pathway, Journal of the American Chemical Society, vol.137, issue.51, pp.16133-16176, 2015.
DOI : 10.1021/jacs.5b10592

S. Leidgens, K. Bullough, H. Shi, F. Li, M. Shakoury-elizeh et al., Each Member of the Poly-r(C)-binding Protein 1 (PCBP) Family Exhibits Iron Chaperone Activity toward Ferritin, Journal of Biological Chemistry, vol.19, issue.24, pp.17791-802, 2013.
DOI : 10.1016/j.spen.2006.08.002

S. Dixon, Ferroptosis: bug or feature?, Immunological Reviews, vol.23, issue.15, pp.150-157, 2017.
DOI : 10.1038/cdd.2015.126