L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, and J. Lortet-tieulent, Global cancer statistics, 2012, Jemal, A. Global cancer statistics, pp.87-108, 2012.
DOI : 10.1038/nrc1948

M. Harvie, A. Howell, and D. G. Evans, Can Diet and Lifestyle Prevent Breast Cancer: What Is the Evidence?, American Society of Clinical Oncology Educational Book, vol.35, pp.66-73, 2015.
DOI : 10.14694/EdBook_AM.2015.35.e66

S. A. Eccles, E. O. Aboagye, S. Ali, A. S. Anderson, J. Armes et al., Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer, Breast Cancer Research, vol.101, issue.5, pp.15-92, 2013.
DOI : 10.1093/jnci/djp386

Y. M. Coyle, The Effect of Environment on Breast Cancer Risk, Breast Cancer Research and Treatment, vol.11, issue.Suppl1, pp.273-288, 2004.
DOI : 10.1006/scbi.2001.0390

. Available-online, org/content/dam/cancer-org/research/cancer-facts-and-statistics/breast-cancer- facts-and-figures/breast-cancer-facts-and-figures, 2011.

S. Ali and R. C. Coombes, ENDOCRINE-RESPONSIVE BREAST CANCER AND STRATEGIES FOR COMBATING RESISTANCE, Nature Reviews Cancer, vol.104, issue.2, pp.101-112, 2002.
DOI : 10.1126/science.277.5331.1508

M. F. Sweeney, N. Hasan, A. M. Soto, and C. Sonnenschein, Environmental endocrine disruptors: Effects on the human male reproductive system, Reviews in Endocrine and Metabolic Disorders, vol.121, issue.9, pp.341-357, 2015.
DOI : 10.1016/j.mce.2014.09.028

E. Diamanti-kandarakis, J. Bourguignon, L. C. Giudice, R. Hauser, G. S. Prins et al., Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement, Endocrine Reviews, vol.30, issue.4, pp.293-342, 2009.
DOI : 10.1210/er.2009-0002

URL : https://academic.oup.com/edrv/article-pdf/30/4/293/10334449/edrv0293.pdf

J. Luevano and C. Damodaran, A Review of Molecular Events of Cadmium-Induced Carcinogenesis, Journal of Environmental Pathology, Toxicology and Oncology, vol.33, issue.3, pp.183-194
DOI : 10.1615/JEnvironPatholToxicolOncol.2014011075

A. Bergman, J. J. Heindel, T. Kasten, K. A. Kidd, S. Jobling et al., The Impact of Endocrine Disruption: A Consensus Statement on the State of the Science, Environmental Health Perspectives, vol.121, issue.4, pp.104-106, 2013.
DOI : 10.1289/ehp.1205448

Q. Wang, M. Chen, G. Shan, P. Chen, S. Cui et al., Bioaccumulation and biomagnification of emerging bisphenol analogues in aquatic organisms from Taihu Lake, China, Science of The Total Environment, vol.598, pp.814-820, 2017.
DOI : 10.1016/j.scitotenv.2017.04.167

L. Fol, V. Aït-aïssa, S. Sonavane, M. Porcher, J. Balaguer et al., In vitro and in vivo estrogenic activity of BPA, BPF and BPS in zebrafish-specific assays, Ecotoxicology and Environmental Safety, vol.142, pp.150-156, 2017.
DOI : 10.1016/j.ecoenv.2017.04.009

URL : https://hal.archives-ouvertes.fr/hal-01604318

S. D. Melvin and F. D. Leusch, Removal of trace organic contaminants from domestic wastewater: A meta-analysis comparison of sewage treatment technologies, Environment International, vol.92, issue.93, pp.92-93
DOI : 10.1016/j.envint.2016.03.031

O. C. King, J. P. Van-de-merwe, J. A. Mcdonald, and F. D. Leusch, Concentrations of levonorgestrel and ethinylestradiol in wastewater effluents: Is the progestin also cause for concern?, Environmental Toxicology and Chemistry, vol.47, issue.6, pp.1378-1385, 2016.
DOI : 10.1021/es304305k

M. Clara, N. Kreuzinger, B. Strenn, O. Gans, and H. Kroiss, The solids retention time???a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants, Water Research, vol.39, issue.1, pp.97-106, 2005.
DOI : 10.1016/j.watres.2004.08.036

Z. Liu, Y. Kanjo, and S. Mizutani, Urinary excretion rates of natural estrogens and androgens from humans, and their occurrence and fate in the environment: A review, Science of The Total Environment, vol.407, issue.18, pp.4975-4985, 2009.
DOI : 10.1016/j.scitotenv.2009.06.001

M. E. Baker, Expanding the structural footprint of xenoestrogens. Endocr, Disruptors 2014, p.967138

M. E. Baker, What are the physiological estrogens? Steroids, pp.337-340, 2013.

A. D. Lafleur and K. A. Schug, A review of separation methods for the determination of estrogens and plastics-derived estrogen mimics from aqueous systems, Analytica Chimica Acta, vol.696, issue.1-2, pp.6-26, 2011.
DOI : 10.1016/j.aca.2011.03.054

Z. Liu, J. A. Ogejo, A. Pruden, and K. F. Knowlton, Occurrence, fate and removal of synthetic oral contraceptives (SOCs) in the natural environment: A review, Science of The Total Environment, vol.409, issue.24, pp.5149-5161, 2011.
DOI : 10.1016/j.scitotenv.2011.08.047

S. Ramos, V. Homem, A. Alves, and L. Santos, Advances in analytical methods and occurrence of organic UV-filters in the environment ??? A review, Science of The Total Environment, vol.526, pp.278-311, 2015.
DOI : 10.1016/j.scitotenv.2015.04.055

Z. Xiao, Y. Yang, Y. Li, X. Fan, and S. Ding, Determination of neonicotinoid insecticides residues in eels using subcritical water extraction and ultra-performance liquid chromatography???tandem mass spectrometry, Analytica Chimica Acta, vol.777, pp.32-40, 2013.
DOI : 10.1016/j.aca.2013.03.026

A. Wluka, H. Rüdel, K. Pohl, and J. Schwarzbauer, Analytical method development for the determination of eight biocides in various environmental compartments and application for monitoring purposes, Environmental Science and Pollution Research, vol.409, issue.5, pp.21894-21907, 2016.
DOI : 10.1016/j.scitotenv.2010.11.031

G. Kerdivel, D. Habauzit, and F. Pakdel, Assessment and Molecular Actions of Endocrine-Disrupting Chemicals That Interfere with Estrogen Receptor Pathways, International Journal of Endocrinology, vol.5, issue.3, p.501851, 2013.
DOI : 10.1016/j.mce.2007.05.011

URL : https://hal.archives-ouvertes.fr/inserm-00863365

F. D. Leusch, P. A. Neale, and A. Hebert, Analysis of the sensitivity of in vitro bioassays for androgenic, progestagenic, glucocorticoid, thyroid and estrogenic activity: Suitability for drinking and environmental waters, Environment International, vol.99, pp.120-130, 2017.
DOI : 10.1016/j.envint.2016.12.014

J. Zhang, Y. Wei, H. Li, E. Y. Zeng, and J. You, Application of Box???Behnken design to optimize multi-sorbent solid phase extraction for trace neonicotinoids in water containing high level of matrix substances, Talanta, vol.170, pp.392-398, 2017.
DOI : 10.1016/j.talanta.2017.04.031

C. A. Morrissey, P. Mineau, J. H. Devries, F. Sanchez-bayo, M. Liess et al., Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review, Environment International, vol.74, pp.291-303, 2015.
DOI : 10.1016/j.envint.2014.10.024

J. Struger, J. Grabuski, S. Cagampan, E. Sverko, D. Mcgoldrick et al., Factors influencing the occurrence and distribution of neonicotinoid insecticides in surface waters of southern Ontario, Canada, Chemosphere, vol.169, pp.516-523, 2017.
DOI : 10.1016/j.chemosphere.2016.11.036

J. C. Miles, J. Hua, M. S. Sepulveda, C. H. Krupke, and J. Hoverman, Effects of clothianidin on aquatic communities: Evaluating the impacts of lethal and sublethal exposure to neonicotinoids, PLOS ONE, vol.8, issue.3, p.174171, 2017.
DOI : 10.1371/journal.pone.0174171.s011

J. Im and F. Löffler, Fate of Bisphenol A in Terrestrial and Aquatic Environments, Environmental Science & Technology, vol.50, issue.16, pp.8403-8416
DOI : 10.1021/acs.est.6b00877

J. Corrales, L. A. Kristofco, W. B. Steele, B. S. Yates, C. S. Breed et al., Global Assessment of Bisphenol A in the Environment, Dose. Response. 2015, 13. [CrossRef]
DOI : 10.2166/wst.2013.824

P. Chen, K. G. Linden, D. E. Hinton, S. Kashiwada, E. J. Rosenfeldt et al., Biological assessment of bisphenol A degradation in water following direct photolysis and UV advanced oxidation, Chemosphere, vol.65, issue.7, pp.1094-1102, 2006.
DOI : 10.1016/j.chemosphere.2006.04.048

V. K. Sharma, G. A. Anquandah, R. A. Yngard, H. Kim, J. Fekete et al., Nonylphenol, octylphenol, and bisphenol-A in the aquatic environment: A review on occurrence, fate, and treatment, Journal of Environmental Science and Health, Part A, vol.68, issue.6, pp.423-442, 2009.
DOI : 10.1016/j.chemosphere.2007.01.056

Y. Xu, T. V. Nguyen, M. Reinhard, and K. Y. Gin, Photodegradation kinetics of p-tert-octylphenol, 4-tert-octylphenoxy-acetic acid and ibuprofen under simulated solar conditions in surface water, Chemosphere, vol.85, issue.5, pp.790-796, 2011.
DOI : 10.1016/j.chemosphere.2011.06.069

M. Neam¸tuneam¸tu and F. Frimmel, Photodegradation of endocrine disrupting chemical nonylphenol by simulated solar UV-irradiation, Science of The Total Environment, vol.369, issue.1-3, pp.295-306, 2006.
DOI : 10.1016/j.scitotenv.2006.05.002

L. W. Olaniyan and N. Mkwetshana, Okoh, A.I. Triclosan in water, implications for human and environmental health, 1639.

R. M. Baena-nogueras, E. González-mazo, and P. A. Lara-martín, Degradation kinetics of pharmaceuticals and personal care products in surface waters: photolysis vs biodegradation, Science of The Total Environment, vol.590, issue.591, pp.590-591
DOI : 10.1016/j.scitotenv.2017.03.015

M. Wu, D. Xie, G. Xu, R. Sun, X. Xia et al., Benzophenone-type UV filters in surface waters: An assessment of profiles and ecological risks in Shanghai, China, Ecotoxicology and Environmental Safety, vol.141, pp.235-241, 2017.
DOI : 10.1016/j.ecoenv.2017.03.013

K. Kotnik, T. Kosjek, B. ?egura, M. Filipi?, and E. Heath, Photolytic fate and genotoxicity of benzophenone-derived compounds and their photodegradation mixtures in the aqueous environment, Chemosphere, vol.147, pp.114-123, 2016.
DOI : 10.1016/j.chemosphere.2015.12.068

A. Z. Aris, A. S. Shamsuddin, and S. M. Praveena, Occurrence of 17??-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review, Environment International, vol.69, pp.104-119, 2014.
DOI : 10.1016/j.envint.2014.04.011

K. Sornalingam, A. Mcdonagh, and J. L. Zhou, Photodegradation of estrogenic endocrine disrupting steroidal hormones in aqueous systems: Progress and future challenges, Science of The Total Environment, vol.550, issue.550, pp.209-224
DOI : 10.1016/j.scitotenv.2016.01.086

D. Gao and Z. Wen, Phthalate esters in the environment: A critical review of their occurrence, biodegradation, and removal during wastewater treatment processes, Science of The Total Environment, vol.541, pp.986-1001, 2016.
DOI : 10.1016/j.scitotenv.2015.09.148

R. Lertsirisopon, S. Soda, K. Sei, and M. Ike, Abiotic degradation of four phthalic acid esters in aqueous phase under natural sunlight irradiation, Journal of Environmental Sciences, vol.21, issue.3, pp.285-290, 2009.
DOI : 10.1016/S1001-0742(08)62265-2

R. Yusta-garcía, M. Orta-martínez, P. Mayor, and C. González-crespo, Water contamination from oil extraction activities in Northern Peruvian Amazonian rivers, Environmental Pollution, vol.225, pp.370-380, 2017.
DOI : 10.1016/j.envpol.2017.02.063

G. Kerdivel, G. Flouriot, and F. Pakdel, Modulation of Estrogen Receptor Alpha Activity and Expression During Breast Cancer Progression, Vitam. Horm, vol.93, pp.135-160, 2013.
DOI : 10.1016/B978-0-12-416673-8.00004-6

URL : https://hal.archives-ouvertes.fr/hal-00874313

J. Frasor, J. M. Danes, B. Komm, K. C. Chang, C. R. Lyttle et al., Profiling of Estrogen Up- and Down-Regulated Gene Expression in Human Breast Cancer Cells: Insights into Gene Networks and Pathways Underlying Estrogenic Control of Proliferation and Cell Phenotype, Endocrinology, vol.144, issue.10, pp.4562-4574, 2003.
DOI : 10.1210/en.2003-0567

E. C. Chang, J. Frasor, B. Komm, and B. S. Katzenellenbogen, Impact of Estrogen Receptor ?? on Gene Networks Regulated by Estrogen Receptor ?? in Breast Cancer Cells, Endocrinology, vol.147, issue.10, pp.4831-4842, 2006.
DOI : 10.1210/en.2006-0563

B. Huang, Y. Omoto, H. Iwase, H. Yamashita, T. Toyama et al., Differential expression of estrogen receptor ??, ??1, and ??2 in lobular and ductal breast cancer, Proc. Natl. Acad. Sci. USA 2014, pp.1933-1938
DOI : 10.1073/pnas.0308319100

R. Suriano, D. Chaudhuri, R. S. Johnson, E. Lambers, B. T. Ashok et al., 17??-Estradiol Mobilizes Bone Marrow-Derived Endothelial Progenitor Cells to Tumors, Cancer Research, vol.68, issue.15, pp.6038-6042, 2008.
DOI : 10.1158/0008-5472.CAN-08-1009

URL : http://cancerres.aacrjournals.org/content/canres/68/15/6038.full.pdf

S. Rajoria, R. Suriano, Y. L. Wilson, A. L. George, J. Geliebter et al., Estradiol-mediated tumor neo-vascularization, Oncology Letters, vol.2, issue.3, pp.453-457, 2011.
DOI : 10.3892/ol.2011.283

M. Elkin, A. Orgel, and H. K. Kleinman, An Angiogenic Switch in Breast Cancer Involves Estrogen and Soluble Vascular Endothelial Growth Factor Receptor 1, JNCI Journal of the National Cancer Institute, vol.298, issue.5592, pp.875-878, 2004.
DOI : 10.1126/science.1073734

J. Arnal, F. Lenfant, R. Metivier, G. Flouriot, D. Henrion et al., Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications, Physiological Reviews, vol.11, issue.3, pp.2017-1045
DOI : 10.1038/emboj.2011.368

URL : https://hal.archives-ouvertes.fr/hal-01533249

W. Welboren, F. C. Sweep, P. N. Span, and H. G. Stunnenberg, Genomic actions of estrogen receptor ??: what are the targets and how are they regulated?, Endocrine Related Cancer, vol.16, issue.4, pp.1073-1089, 2009.
DOI : 10.1677/ERC-09-0086

R. J. Pietras, Interactions Between Estrogen and Growth Factor Receptors in Human Breast Cancers and the Tumor-Associated Vasculature, The Breast Journal, vol.43, issue.1, pp.361-373, 2003.
DOI : 10.1038/sj.onc.1205410

W. Park and V. C. Jordan, Selective estrogen receptor modulators (SERMS) and their roles in breast cancer prevention, Trends in Molecular Medicine, vol.8, issue.2, pp.82-88, 2002.
DOI : 10.1016/S1471-4914(02)02282-7

J. A. Katzenellenbogen, The 2010 Philip S. Portoghese Medicinal Chemistry Lectureship: Addressing the ???Core Issue??? in the Design of Estrogen Receptor Ligands, Journal of Medicinal Chemistry, vol.54, issue.15, pp.5271-5282, 2011.
DOI : 10.1021/jm200801h

S. Sengupta, I. Obiorah, P. Y. Maximov, R. Curpan, and V. C. Jordan, Molecular mechanism of action of bisphenol and bisphenol A mediated by oestrogen receptor alpha in growth and apoptosis of breast cancer cells, British Journal of Pharmacology, vol.31, issue.1, pp.167-178, 2013.
DOI : 10.1007/BF00689683

J. Cano-nicolau, C. Vaillant, E. Pellegrini, T. D. Charlier, O. Kah et al., Estrogenic Effects of Several BPA Analogs in the Developing Zebrafish Brain, Frontiers in Neuroscience, vol.165, issue.143, p.112, 2016.
DOI : 10.1016/j.ygcen.2009.04.017

URL : https://hal.archives-ouvertes.fr/hal-01299976

W. Lozada, K. Keri, and R. A. , Bisphenol A Increases Mammary Cancer Risk in Two Distinct Mouse Models of Breast Cancer, Biology of Reproduction, vol.85, issue.3, pp.490-497, 2011.
DOI : 10.1095/biolreprod.110.090431

D. D. Seachrist, K. W. Bonk, S. Ho, G. S. Prins, A. M. Soto et al., A review of the carcinogenic potential of bisphenol A, Reproductive Toxicology, vol.59, pp.167-182, 2016.
DOI : 10.1016/j.reprotox.2015.09.006

E. Dhimolea, P. R. Wadia, T. J. Murray, M. L. Settles, J. D. Treitman et al., Prenatal Exposure to BPA Alters the Epigenome of the Rat Mammary Gland and Increases the Propensity to Neoplastic Development, PLoS ONE, vol.43, issue.(3), p.99800
DOI : 10.1371/journal.pone.0099800.s004

R. R. Jadhav, J. Santucci-pereira, Y. V. Wang, J. Liu, T. D. Nguyen et al., DNA Methylation Targets Influenced by Bisphenol A and/or Genistein Are Associated with Survival Outcomes in Breast Cancer Patients, Genes, vol.490, issue.5, p.144, 2017.
DOI : 10.1016/j.ejphar.2007.07.039

H. Okada, T. Tokunaga, X. Liu, S. Takayanagi, A. Matsushima et al., Direct Evidence Revealing Structural Elements Essential for the High Binding Ability of Bisphenol A to Human Estrogen-Related Receptor-??, Environmental Health Perspectives, vol.116, issue.1, pp.32-38, 2007.
DOI : 10.1289/ehp.10587

M. Tohme, S. M. Prud-'homme, A. Boulahtouf, E. Samarut, F. Brunet et al., receptor of bisphenol A, The FASEB Journal, vol.28, issue.7, pp.3124-3133, 2014.
DOI : 10.1289/ehp.11537

S. Kim, K. Hwang, and K. Choi, Treatment with kaempferol suppresses breast cancer cell growth caused by estrogen and triclosan in cellular and xenograft breast cancer models, The Journal of Nutritional Biochemistry, vol.28, pp.70-82, 2016.
DOI : 10.1016/j.jnutbio.2015.09.027

G. Lee, K. Choi, and K. Hwang, Kaempferol, a phytoestrogen, suppressed triclosan-induced epithelial-mesenchymal transition and metastatic-related behaviors of MCF-7 breast cancer cells, Environmental Toxicology and Pharmacology, vol.49, pp.48-57, 2017.
DOI : 10.1016/j.etap.2016.11.016

H. Lee, K. Hwang, K. Nam, H. Kim, and K. Choi, Progression of Breast Cancer Cells Was Enhanced by Endocrine-Disrupting Chemicals, Triclosan and Octylphenol, via an Estrogen Receptor-Dependent Signaling Pathway in Cellular and Mouse Xenograft Models, Chemical Research in Toxicology, vol.27, issue.5, pp.834-842, 2014.
DOI : 10.1021/tx5000156

K. Gopalakrishnan, S. L. Teitelbaum, L. Lambertini, J. Wetmur, F. Manservisi et al., Changes in mammary histology and transcriptome profiles by low-dose exposure to environmental phenols at critical windows of development, Environmental Research, vol.152, pp.233-243, 2017.
DOI : 10.1016/j.envres.2016.10.021

R. Acevedo, P. G. Parnell, H. Villanueva, L. M. Chapman, T. Gimenez et al., The contribution of hepatic steroid metabolism to serum estradiol and estriol concentrations in nonylphenol treated MMTVneu mice and its potential effects on breast cancer incidence and latency, Journal of Applied Toxicology, vol.180, issue.5, pp.339-353, 2005.
DOI : 10.1093/oxfordjournals.aje.a009535

T. Raecker, B. Thiele, R. M. Boehme, and K. Guenther, Endocrine disrupting nonyl- and octylphenol in infant food in Germany: Considerable daily intake of nonylphenol for babies, Chemosphere, vol.82, issue.11, pp.1533-1540, 2011.
DOI : 10.1016/j.chemosphere.2010.11.065

L. B. Clark, R. T. Rosen, T. G. Hartman, J. B. Louis, I. H. Suffet et al., Determination of Alkylphenol Ethoxylates and Their Acetic Acid Derivatives in Drinking Water by Particle Beam Liquid Chromatography/Mass Spectrometry, International Journal of Environmental Analytical Chemistry, vol.5, issue.3, pp.167-180, 1992.
DOI : 10.1016/0043-1354(88)90107-8

A. M. Soto, H. Justicia, and J. W. Wray, p-Nonyl-phenol: an estrogenic xenobiotic released from "modified" polystyrene, Environmental Health Perspectives, vol.92, pp.167-173, 1991.
DOI : 10.1289/ehp.9192167

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1519400/pdf/envhper00388-0165.pdf

S. In, S. Kim, R. Go, K. Hwang, and K. Choi, Benzophenone-1 and Nonylphenol Stimulated MCF-7 Breast Cancer Growth by Regulating Cell Cycle and Metastasis-Related Genes Via an Estrogen Receptor ??-Dependent Pathway, Journal of Toxicology and Environmental Health, Part A, vol.50, issue.8, pp.492-505, 2015.
DOI : 10.1677/ERC-09-0086

S. Terasaka, A. Inoue, M. Tanji, and R. Kiyama, Expression profiling of estrogen-responsive genes in breast cancer cells treated with alkylphenols, chlorinated phenols, parabens, or bis- and benzoylphenols for evaluation of estrogenic activity, Toxicology Letters, vol.163, issue.2, pp.130-141, 2006.
DOI : 10.1016/j.toxlet.2005.10.005

K. Van-den-belt, P. Berckmans, C. Vangenechten, R. Verheyen, and H. Witters, Comparative study on the in vitro/in vivo estrogenic potencies of 17??-estradiol, estrone, 17??-ethynylestradiol and nonylphenol, Aquatic Toxicology, vol.66, issue.2, pp.183-195, 2004.
DOI : 10.1016/j.aquatox.2003.09.004

H. Kawaguchi, N. Miyoshi, Y. Miyamoto, M. Souda, Y. Umekita et al., Effects of fetal exposure to 4-n-octylphenol on mammary tumorigenesis in rats, pp.463-470, 2010.

S. Kim and K. Choi, Occurrences, toxicities, and ecological risks of benzophenone-3, a common component of organic sunscreen products: A mini-review, Environment International, vol.70, pp.143-157, 2014.
DOI : 10.1016/j.envint.2014.05.015

K. Fent, A. Zenker, and M. Rapp, Widespread occurrence of estrogenic UV-filters in aquatic ecosystems in Switzerland, Environmental Pollution, vol.158, issue.5, pp.1817-1824, 2010.
DOI : 10.1016/j.envpol.2009.11.005

M. Schlumpf, B. Cotton, M. Conscience, V. Haller, B. Steinmann et al., In Vitro and in Vivo Estrogenicity of UV Screens, Environmental Health Perspectives, vol.109, issue.3, pp.239-244, 2001.
DOI : 10.1289/ehp.01109239

Y. Nakagawa and T. Suzuki, Metabolism of 2-hydroxy-4-methoxybenzophenone in isolated rat hepatocytes and xenoestrogenic effects of its metabolites on MCF-7 human breast cancer cells, Chemico-Biological Interactions, vol.139, issue.2, pp.115-128, 2002.
DOI : 10.1016/S0009-2797(01)00293-9

G. Kerdivel, R. Le-guevel, D. Habauzit, F. Brion, S. Ait-aissa et al., Estrogenic Potency of Benzophenone UV Filters in Breast Cancer Cells: Proliferative and Transcriptional Activity Substantiated by Docking Analysis, PLoS ONE, vol.81, issue.1, p.60567, 2013.
DOI : 10.1371/journal.pone.0060567.t002

URL : https://hal.archives-ouvertes.fr/inserm-00838323

É. Caron-beaudoin, M. S. Denison, and J. Sanderson, Effects of Neonicotinoids on Promoter-Specific Expression and Activity of Aromatase (CYP19) in Human Adrenocortical Carcinoma (H295R) and Primary Umbilical Vein Endothelial (HUVEC) Cells, Toxicological Sciences, vol.99, issue.1, pp.134-144, 2016.
DOI : 10.1021/es048679k

URL : https://hal.archives-ouvertes.fr/pasteur-01350852

M. Tomizawa and J. Casida, NEONICOTINOID INSECTICIDE TOXICOLOGY: Mechanisms of Selective Action, Annual Review of Pharmacology and Toxicology, vol.45, issue.1, pp.247-268, 2005.
DOI : 10.1146/annurev.pharmtox.45.120403.095930

P. Jeschke, R. Nauen, M. Schindler, and A. Elbert, Overview of the Status and Global Strategy for Neonicotinoids, Journal of Agricultural and Food Chemistry, vol.59, issue.7, pp.2897-2908, 2011.
DOI : 10.1021/jf101303g

J. Kimura-kuroda, Y. Komuta, Y. Kuroda, M. Hayashi, and H. Kawano, Nicotine-Like Effects of the Neonicotinoid Insecticides Acetamiprid and Imidacloprid on Cerebellar Neurons from Neonatal Rats, PLoS ONE, vol.50, issue.2, 2012.
DOI : 10.1371/journal.pone.0032432.t001

C. Pepper, H. Tu, P. Morrill, S. Garcia-rates, C. Fegan et al., Tumor cell migration is inhibited by a novel therapeutic strategy antagonizing the alpha-7 receptor, Oncotarget, vol.8, issue.7, pp.11414-11424, 2017.
DOI : 10.18632/oncotarget.14545

M. Adeel, X. Song, Y. Wang, D. Francis, and Y. Yang, Environmental impact of estrogens on human, animal and plant life: A critical review, Environment International, vol.99, pp.107-119, 2017.
DOI : 10.1016/j.envint.2016.12.010

I. G. Lange, A. Daxenberger, B. Schiffer, H. Witters, D. Ibarreta et al., Sex hormones originating from different livestock production systems: fate and potential disrupting activity in the environment, Analytica Chimica Acta, vol.473, issue.1-2, pp.27-37, 2002.
DOI : 10.1016/S0003-2670(02)00748-1

Z. Fan, J. Hu, W. An, and M. Yang, Detection and Occurrence of Chlorinated Byproducts of Bisphenol A, Nonylphenol, and Estrogens in Drinking Water of China: Comparison to the Parent Compounds, Environmental Science & Technology, vol.47, issue.19, pp.10841-10850, 2013.
DOI : 10.1021/es401504a

E. Centers and A. Health, The Use of Growth-Promoting Implants in U.S. Feedlots; U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Centers for Epidemiology and Animal Health, 2013.

D. J. Nichols, T. C. Daniel, P. A. Moore, D. R. Edwards, and D. H. Pote, Runoff of Estrogen Hormone 17??-Estradiol from Poultry Litter Applied to Pasture, Journal of Environment Quality, vol.26, issue.4, p.1002, 1997.
DOI : 10.2134/jeq1997.00472425002600040011x

H. E. Gall, S. A. Sassman, B. Jenkinson, L. S. Lee, and C. Jafvert, Hormone loads exported by a tile-drained agroecosystem receiving animal wastes, Hydrological Processes, vol.31, issue.3, pp.1318-1328, 2014.
DOI : 10.1111/j.1752-1688.1995.tb03419.x

D. S. Mansell, R. J. Bryson, T. Harter, J. P. Webster, E. P. Kolodziej et al., Fate of Endogenous Steroid Hormones in Steer Feedlots Under Simulated Rainfall-Induced Runoff, Environmental Science & Technology, vol.45, issue.20, pp.8811-8818, 2011.
DOI : 10.1021/es202072f

J. B. Gadd, L. A. Tremblay, and G. L. Northcott, Steroid estrogens, conjugated estrogens and estrogenic activity in farm dairy shed effluents, Environmental Pollution, vol.158, issue.3, pp.730-736, 2010.
DOI : 10.1016/j.envpol.2009.10.015

A. S. Kolok, D. D. Snow, S. Kohno, M. K. Sellin, and L. J. Guillette, Occurrence and biological effect of exogenous steroids in the Elkhorn River, Nebraska, USA, Science of The Total Environment, vol.388, issue.1-3, pp.104-115, 2007.
DOI : 10.1016/j.scitotenv.2007.08.001

A. M. Soto, J. M. Calabro, N. V. Prechtl, A. Y. Yau, E. F. Orlando et al., Androgenic and Estrogenic Activity in Water Bodies Receiving Cattle Feedlot Effluent in Eastern Nebraska, USA, Androgenic and estrogenic activity in water bodies receiving cattle feedlot effluent in Eastern Nebraska, pp.346-352, 2004.
DOI : 10.1289/ehp.6590

M. Plotan, C. T. Elliott, C. Frizzell, and L. Connolly, Estrogenic endocrine disruptors present in sports supplements. A risk assessment for human health, Food Chemistry, vol.159, issue.159, pp.157-165
DOI : 10.1016/j.foodchem.2014.02.153

J. Cano-nicolau, C. Garoche, N. Hinfray, E. Pellegrini, N. Boujrad et al., Several synthetic progestins disrupt the glial cell specific-brain aromatase expression in developing zebra fish, Toxicology and Applied Pharmacology, vol.305, pp.12-21, 2016.
DOI : 10.1016/j.taap.2016.05.019

URL : https://hal.archives-ouvertes.fr/hal-01366373

B. Jaro?ová, J. Jav?rekjav?jav?rek, O. Adamovský, and K. Hilscherová, Phytoestrogens and mycoestrogens in surface waters ??? Their sources, occurrence, and potential contribution to estrogenic activity, Environment International, vol.81, pp.26-44, 2015.
DOI : 10.1016/j.envint.2015.03.019

S. Lecomte, M. Lelong, G. Bourgine, T. Efstathiou, C. Saligaut et al., Assessment of the potential activity of major dietary compounds as selective estrogen receptor modulators in two distinct cell models for proliferation and differentiation, Toxicology and Applied Pharmacology, vol.325, pp.61-70, 2017.
DOI : 10.1016/j.taap.2017.04.005

URL : https://hal.archives-ouvertes.fr/hal-01558816

K. Howe, M. D. Clark, C. F. Torroja, J. Torrance, C. Berthelot et al., The zebrafish reference genome sequence and its relationship to the human genome, Nature, vol.19, issue.7446, pp.498-503, 2013.
DOI : 10.1101/gr.092759.109

K. Bambino and J. Chu, Zebrafish in Toxicology and Environmental Health, Curr. Top. Dev. Biol, vol.2017, issue.124, pp.331-367
DOI : 10.1016/bs.ctdb.2016.10.007

M. Muñoz-de-toro, C. M. Markey, P. R. Wadia, E. H. Luque, B. S. Rubin et al., Perinatal Exposure to Bisphenol-A Alters Peripubertal Mammary Gland Development in Mice, Endocrinology, vol.146, issue.9, pp.4138-4147, 2005.
DOI : 10.1210/en.2005-0340

L. N. Vandenberg, M. V. Maffini, P. R. Wadia, C. Sonnenschein, B. S. Rubin et al., Exposure to Environmentally Relevant Doses of the Xenoestrogen Bisphenol-A Alters Development of the Fetal Mouse Mammary Gland, Endocrinology, vol.148, issue.1, pp.116-127, 2007.
DOI : 10.1210/en.2006-0561

H. Gao, B. Yang, N. Li, L. Feng, X. Shi et al., Bisphenol A and Hormone-Associated Cancers, Medicine, vol.94, issue.1, p.211, 2015.
DOI : 10.1097/MD.0000000000000211

A. Menuet, E. Pellegrini, I. Anglade, O. Blaise, V. Laudet et al., Molecular Characterization of Three Estrogen Receptor Forms in Zebrafish: Binding Characteristics, Transactivation Properties, and Tissue Distributions1, Biology of Reproduction, vol.98, issue.6, pp.1881-1892, 2002.
DOI : 10.1073/pnas.041617498

T. Hartung and C. Rovida, Chemical regulators have overreached, Nature, vol.460, issue.7259, pp.1080-1081, 2009.
DOI : 10.1038/4601080a

L. Page, Y. Scholze, M. Kah, O. Pakdel, and F. , Assessment of Xenoestrogens Using Three Distinct Estrogen Receptors and the Zebrafish Brain Aromatase Gene in a Highly Responsive Glial Cell System, Environmental Health Perspectives, vol.114, issue.5, pp.752-758, 2006.
DOI : 10.1289/ehp.8141

URL : https://hal.archives-ouvertes.fr/hal-00068400

A. Cosnefroy, F. Brion, E. Maillot-maréchal, J. Porcher, F. Pakdel et al., Selective Activation of Zebrafish Estrogen Receptor Subtypes by Chemicals by Using Stable Reporter Gene Assay Developed in a Zebrafish Liver Cell Line, Toxicological Sciences, vol.81, issue.2, pp.439-449, 2012.
DOI : 10.1093/toxsci/kfh180

URL : https://hal.archives-ouvertes.fr/hal-00750158

M. E. Balmer, H. Buser, M. D. Müller, and T. Poiger, Occurrence of Some Organic UV Filters in Wastewater, in Surface Waters, and in Fish from Swiss Lakes, Environmental Science & Technology, vol.39, issue.4, pp.953-962, 2005.
DOI : 10.1021/es040055r

J. Molina-molina, A. Escande, A. Pillon, E. Gomez, F. Pakdel et al., Profiling of benzophenone derivatives using fish and human estrogen receptor-specific in vitro bioassays, Toxicology and Applied Pharmacology, vol.232, issue.3, pp.384-395, 2008.
DOI : 10.1016/j.taap.2008.07.017

URL : https://hal.archives-ouvertes.fr/inserm-00319498

F. Brion, Y. Le-page, B. Piccini, O. Cardoso, S. Tong et al., Screening Estrogenic Activities of Chemicals or Mixtures In Vivo Using Transgenic (cyp19a1b-GFP) Zebrafish Embryos, PLoS ONE, vol.21, issue.5, p.36069, 2012.
DOI : 10.1371/journal.pone.0036069.t002

URL : https://hal.archives-ouvertes.fr/hal-00877371

O. Lee, A. Takesono, M. Tada, C. R. Tyler, and T. Kudoh, Biosensor Zebrafish Provide New Insights into Potential Health Effects of Environmental Estrogens, Environmental Health Perspectives, vol.120, issue.7, pp.990-996, 2012.
DOI : 10.1289/ehp.1104433

J. Tiefenbach, P. R. Moll, M. R. Nelson, C. Hu, L. Baev et al., A Live Zebrafish-Based Screening System for Human Nuclear Receptor Ligand and Cofactor Discovery, PLoS ONE, vol.5, issue.3, p.9797, 2010.
DOI : 10.1371/journal.pone.0009797.s004

D. A. Gorelick, L. R. Iwanowicz, A. L. Hung, V. S. Blazer, and M. E. Halpern, Transgenic Zebrafish Reveal Tissue-Specific Differences in Estrogen Signaling in Response to Environmental Water Samples, Environmental Health Perspectives, vol.122, pp.356-362, 2014.
DOI : 10.1289/ehp.1307329

N. Hinfray, C. Tebby, C. Garoche, B. Piccini, G. Bourgine et al., Additive effects of levonorgestrel and ethinylestradiol on brain aromatase ( cyp19a1b ) in zebrafish specific in vitro and in vivo bioassays, Toxicology and Applied Pharmacology, vol.307, pp.108-114, 2016.
DOI : 10.1016/j.taap.2016.07.023

URL : https://hal.archives-ouvertes.fr/hal-01367151

L. Järup, M. Berglund, C. G. Elinder, G. Nordberg, and M. Vahter, Health effects of cadmium exposure?a review of the literature and a risk estimate, Scand. J. Work. Environ. Health, pp.24-25, 1998.

A. Engström, K. Michaëlsson, Y. Suwazono, A. Wolk, M. Vahter et al., Long-term cadmium exposure and the association with bone mineral density and fractures in a population-based study among women, Journal of Bone and Mineral Research, vol.109, issue.(Suppl 2), pp.486-495, 2011.
DOI : 10.1016/j.envres.2008.10.008

L. Wang, X. Cui, H. Cheng, F. Chen, J. Wang et al., A review of soil cadmium contamination in China including a health risk assessment, Environmental Science and Pollution Research, vol.49, issue.2, pp.16441-16452, 2015.
DOI : 10.1021/es5047099

I. Messaoudi and F. Pakdel, Inhibitory effect of cadmium on estrogen signaling in zebrafish brain and protection by zinc, J. Appl. Toxicol, vol.36, pp.863-871, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01274217

J. F. Amatruda, J. L. Shepard, H. M. Stern, and L. Zon, Zebrafish as a cancer model system, Cancer Cell, vol.1, issue.3, pp.229-231, 2002.
DOI : 10.1016/S1535-6108(02)00052-1

D. M. Langenau, D. Traver, A. A. Ferrando, J. L. Kutok, J. C. Aster et al., Myc-Induced T Cell Leukemia in Transgenic Zebrafish, Science, vol.299, issue.5608, pp.887-890, 2003.
DOI : 10.1126/science.1080280

L. M. Lee, E. A. Seftor, G. Bonde, R. A. Cornell, and M. J. Hendrix, The fate of human malignant melanoma cells transplanted into zebrafish embryos: Assessment of migration and cell division in the absence of tumor formation, Developmental Dynamics, vol.3, issue.4, pp.1560-1570, 2005.
DOI : 10.1016/S0002-9440(10)65173-5

M. Haldi, C. Ton, W. L. Seng, and P. Mcgrath, Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish, Angiogenesis, vol.208, issue.1???2, pp.139-151, 2006.
DOI : 10.1016/S0002-9440(10)63207-5

Y. Teng, X. Xie, S. Walker, D. T. White, J. S. Mumm et al., Evaluating human cancer cell metastasis in zebrafish, BMC Cancer, vol.43, issue.1, p.453, 2013.
DOI : 10.1371/journal.pone.0024596

A. Eguiara, O. Holgado, I. Beloqui, L. Abalde, Y. Sanchez et al., Xenografts in zebrafish embryos as a rapid functional assay for breast cancer stem-like cell identification, Cell Cycle, vol.10, issue.21, pp.3751-3757, 2011.
DOI : 10.4161/cc.10.21.17921

T. J. Dahlem, K. Hoshijima, M. J. Jurynec, D. Gunther, C. G. Starker et al., Simple Methods for Generating and Detecting Locus-Specific Mutations Induced with TALENs in the Zebrafish Genome, PLoS Genetics, vol.8, issue.8, p.1002861, 2012.
DOI : 10.1371/journal.pgen.1002861.s012

T. O. Auer, K. Duroure, A. De-cian, J. Concordet, and F. Del-bene, Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair, Genome Research, vol.24, issue.1, pp.142-153, 2014.
DOI : 10.1101/gr.161638.113

G. K. Varshney, W. Pei, M. C. Lafave, J. Idol, L. Xu et al., High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9, High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9, pp.1030-1042, 2015.
DOI : 10.1101/gr.186379.114

J. Liu, Y. Zhou, X. Qi, J. Chen, W. Chen et al., CRISPR/Cas9 in zebrafish: an efficient combination for human genetic diseases modeling, Human Genetics, vol.9, issue.1, pp.1-12, 2017.
DOI : 10.1038/nprot.2014.094

L. Fernandez-del-ama, M. Jones, P. Walker, A. Chapman, J. A. Braun et al., Reprofiling using a zebrafish melanoma model reveals drugs cooperating with targeted therapeutics, Oncotarget, vol.7, pp.40348-40361, 2016.

R. T. Peterson, S. Y. Shaw, T. A. Peterson, D. J. Milan, T. P. Zhong et al., Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation, Nature Biotechnology, vol.297, issue.5, pp.595-599, 2004.
DOI : 10.1126/science.1071762

L. I. Zon and R. T. Peterson, In vivo drug discovery in the zebrafish, Nature Reviews Drug Discovery, vol.23, issue.1, pp.35-44, 2005.
DOI : 10.1038/12692

J. B. Phillips and M. Westerfield, Zebrafish models in translational research: tipping the scales toward advancements in human health, Disease Models & Mechanisms, vol.7, issue.7, pp.739-743
DOI : 10.1242/dmm.015545

P. J. Babin, C. Goizet, and D. Raldúa, Zebrafish models of human motor neuron diseases: Advantages and limitations, Progress in Neurobiology, vol.118, issue.118, pp.36-58
DOI : 10.1016/j.pneurobio.2014.03.001

I. Braasch and J. Postlethwait, Polyploidy in Fish and the Teleost Genome Duplication, In Polyploidy and Genome Evolution, pp.341-383, 2012.
DOI : 10.1007/978-3-642-31442-1_17