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ABSTRACT

A number of nanoparticles has been developed by chemists for biomedical
applications to meet imaging and targeting needs. In parallel, adoptive T therapy with
chimeric antigen receptor engineered T cells (CAR T cells) has recently held great
promise in B-cell malignancy treatments thanks to the development of anti-CD19
CAR T cells. Indeed, CD19 is a reliable B cell marker and a validated target protein
for therapy. In this perspective article, we propose to discuss the advantages, limits
and challenges of nanoparticles and CAR T cells, focusing on CD19 targeting
objects: anti-CD19 nanoparticles and anti-CD19 CAR T cells, because those
genetically-modified cells are the most widely developed in clinical setting. In the first
part, we will introduce B cell malignancies and the CD19 surface marker. Then we
will present the positioning of nanomedicine in the topic of B cell malignancy, before
exposing CAR T technology. Finally, we will discuss the complementary approaches

between nanoparticles and CAR T cells.
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INTRODUCTION

A hematological malignant cell is defined as a hematopoietic cell blocked at an early
stage of differentiation and undergoing an uncontrolled clonal proliferation. So far,
tremendous improvement in cancer treatment has been obtained thanks to the
identification of therapeutic drugs, better molecular understanding of the onset and
progression of malignancy, more sensitive detection of tumor cells, more effective
follow-up of the disease, better management of adverse effects, optimization of
protocol design... Many challenges are still to be undertaken. From the time a patient
arrives to be diagnosed to the moment he is cured, physicians and medical staff
encounter at least the following issues: the early identification of the tumor, the
imaging of malignant cells (where are localized the malignant cells? Is that the
primary tumor or a metastasis?), the delivery of therapeutic drugs and avoidance of
adverse effects on non-malignant cells (sometimes minimizing the risk of generation
of a secondary cancer), and finally the identification of residual cells that could

ultimately be at the origin of refractory cancer or relapse.

The chimeric antigen receptor (CAR) T cell therapy is a revolutionary approach of
targeted immunotherapy to treat cancer. In CAR T cell therapy, the therapeutic
effector is a genetically modified cell. CAR T cell therapy may not yet be poised to
overtake chemotherapy as the standard of care, however, it is looking as a promising
treatment for certain patients with no other feasible therapeutic option, such as in
relapsed or refractory leukemia. An alternative research approach for the treatment
of cancer is offered by nanoparticles, which have been proposed as carriers for drug
encapsulation in the 60’s. Since then, a variety of organic and inorganic

nanoparticles, with sizes ranging from circa 5 nm to 200 nm, have been designed for
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a wide range of applications including targeted drug delivery and imaging, thus
boosting the activity of nanomedicine, with some remarkable results particularly in

the field of cancer diagnosis and therapy.

In this perspective article, we will propose to discuss the challenges of nanoparticles
and CAR T cells in the context of hematological malignancies. We will focus on CD19
targeting objects: anti-CD19 nanoparticles and anti-CD19 CAR T cells because those
genetically modified cells are the most widely developed in clinical setting.

In the first part, we will introduce B cell malignancies and their CD19 surface marker,
then we will present the positioning of nanomedicine in the topic of B cell malignancy,
before exposing CAR T technology. Finally, we will discuss the complementary
approaches between nanoparticles and CAR T cells. From the biological point of
view, anti-CD19-grafted nanoparticles and anti-CD19 CAR T cells target the same B
cell lineage. From the therapeutic perspective, nanoparticles and CAR T cells
approaches share common objectives: the optimization of therapeutic effect on target
cells and the minimization of adverse effects. However, the mechanisms of action are
different (see the graphical abstract). It seems reasonable to conceive that
nanoparticles could play a significant role for the potentiation of, and the cooperation

with CAR T cell therapy in the future.

1 CD19, A B CELL RESTRICTED SURFACE PROTEIN AND A RELIABLE

MARKER OF B CELL MALIGNANCIES
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1.1 THE FUNCTIONS OF B LYMPHOCYTES

B cells (also named B lymphocytes) achieve multiple functions that explain their
central role in the immune system (Figure 1). Their main role is the production of
antibodies to identify and neutralize pathogens. The binding of a B lymphocyte to an
antigen triggers an initial step of multiplication and differentiation either into plasma
cell which secretes antibodies or into memory B cell. Besides their role in humoral
immunity, B cells are involved in cytokine production (e.g. IFNy, IL6, IL10), antigen
presentation to T cells, wound healing, cytokine balance for the differentiation
between T lymphocytes (Th1 and Th2 cells), but also in the transplant rejection
(review in (LeBien and Tedder, 2008)).

B cells undergo differentiation, from hematopoietic stem cells to plasma cells or
memory B cells, through a series of stages characterized by the orderly
rearrangement and expression of immunoglobulins genes including CD19 (Figure 1).
The development of B cells is also distinguished into different stages by the
sequential expression of different transcription factors that induce immunoglobulin
gene recombination and the expression of specific surface phenotypes. The onset of
B cell lineage occurs in the bone marrow until the immature stage, then mature B

cells move into the periphery (i.e. out of the bone marrow) (Zhu and Emerson, 2002).

1.2 B CELL MALIGNANCIES

B cell malignancies are hematological cancer characterized by uncontrolled
proliferation of B lymphocytes blocked along their differentiation process. B cell
malignancies are classified as leukemia (which develops in the bone marrow and
disseminates into the body), lymphoma (a cancer of the lymphatic system

characterized by the development of a cancer cells in lymph nodes) and myeloma
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(cancer of mature B lymphocytes in the bone marrow) (review in (Wang et al., 2012)).
B cell malignancies represent 4% of all cancers in adults and 40% of all cancers in
children. The clinical outcomes of these cancers under standard chemotherapy
depend on the type of B cell malignancies. For instance, children with B-Acute
Lymphoblastic Leukemia (ALL) have an overall good prognosis, but some of them
are refractory to chemotherapy or develop multiple relapses and have a poor
prognosis (review in (Park et al., 2016)). Relapsed or refractory B cell ALL in adults

are associated with a poor prognosis (review in (Geyer and Brentjens, 2016)).

1.3 THE SURFACE PROTEIN CD19: A VALIDATED TARGET PROTEIN FOR THERAPY

131 CD19 structure and function

CD19 is a 95 kDa transmembrane glycoprotein of the immunoglobulin superfamily
composed of an extracellular domain, a single transmembrane domain, and a
cytoplasmic domain (Stamenkovic and Seed, 1988). CD19 belongs to the CD19
complex on the surface of B cells with CD21 and CD81 proteins CD19
activation induces two downstream pathways. The first cascade of activation is
dependent on the B Cell Receptor (BCR). The BCR is composed of a membrane
immunoglobulin  and a signaling subunit composed of a heterodimer of
immunoglobulin alpha and beta. The BCR plays a role as antigen receptor and CD19
is a co-receptor for BCR signal transduction (review in (Wang et al., 2012)). The
second pathway depending on CD19 is independent of the BCR: the CD19 complex
is able to bind activated complement fragment C3d and modulates BCR signaling

(review in (Wang et al., 2012)).
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1.3.2 Internalization of CD19 after binding to anti-CD19 antibody

CD19 proteins on the surface of each B lineage leukemia/lymphoma cells are rapidly
internalized upon ligation with anti-CD19 antibodies or immunoconjugates (Uckun et
al., 1988; Yan et al., 2005), and are ultimately taken up by lysosomes (Carter, 2006 ;

Gerber et al., 2009; Hong et al., 2015).

133 Cells that express CD19

CD19 is a B cell-specific protein expressed early in B cell ontogeny (Stamenkovic
and Seed, 1988) (Figure 1). CD19 transcripts are restricted to members of the B cell
lineage and are not expressed in other hematological lineages including normal
myeloid, erythroid, megakaryocytic, or multiineage bone marrow progenitor cells
(Uckun et al., 1988). CD19 protein is found on the surface of B cells from the proB
cell stage until plasma cell differentiation of the B lineage (Tedder et al., 1994).
Several hundred thousand CD19 proteins can be found on the surface of each B-
lineage leukemia/lymphoma (Uckun et al., 1988)(review in (Li et al., 2017)). All
resting B cells display CD19 antigens, and CD19 expression persists upon activation,
but is lost upon further differentiation to immunoglobulin-secreting plasma cells
(Stamenkovic and Seed, 1988). CD19 is also more abundant in pre-B cell lines and
less abundant in plasmacytomas (Stamenkovic and Seed, 1988). Aimost all early B
cell malignancies show CD19 expression at normal to high levels: 80% of ALL, 88%
of B cell lymphomas and 100% of B cell leukemias (review in (Wang et al., 2012)).

However its expression decreases in myeloma cases (review in (Wang et al., 2012)).
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1.34 CD19 as a target for therapy

Twenty years ago, CD19 was already proposed as a « suitable target for
immunotoxin-mediated treatment of aggressive forms of B cell lymphomas and
leukemia that responds poorly to conventional chemotherapy» (Uckun et al., 1988).
Currently, CD19 antibody-based therapy has become reality to treat B cells
malignancy. In the 2010’s, various strategies harnessing the potential of targeting B
cells restricted to CD19 antigen were in development: antibody-drug conjugate, Fc-
engineered human CD19 antibody with antibody-dependent cell-mediated
cytotoxicity, chimeric antigen receptor, etc. (Hammer, 2012). The most advanced
anti-CD19 therapy is the Blinatumomab (BLINCYTO®, Amgen) (review in (Hammer,
2012)) (Goebeler and Bargou, 2016), a bispecific CD19-directed CD3 T cell engager
(BiTE) antibody construct. Blinatumomab binds specifically to CD19 expressed on
the surface of cells of B-lineage origin, and to CD3 expressed on the surface of T
cells. It brings both cells in contact so that the activated T cells can kill the B cells.
Blinatumomab is approved by the US Food-and-Drug-Administration (FDA) and the
European Commission (EC) for the treatment of Philadelphia chromosome-negative
relapsed or refractory B-ALL, in adults (USA and EC) as well as in children (USA
only). Additionally, anti-CD19 antibodies are also in development for
radioimmunotherapy in preclinical studies. "*'I-labeled anti-CD19 antibody has been
largely explored for conventional ™'l radioimmunotherapy because antigen rapidly
internalizes upon binding of antibody — resulting in catabolism and release of ™|
(Scheinberg and Strand, 1983). Moreover, *Y-particle-labeled anti-CD19 antibody
has shown an efficacy comparable to *Y-labeled anti-CD20 antibody in
radioimmunotherapy of mice with xenografts of human B lymphoma cell lines (Ma et

al., 2002).
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2 NANOMEDICINE IN THE TOPIC OF B CELL MALIGNANCY

A number of nanoparticles has been proposed by chemists for cancer diagnostics
and therapeutics, as summarized Table 1. Organic nanoparticles, such as
liposomes, oil-in-water emulsions or polymeric particles, are mainly used as carriers,
whereas nanoparticles, such as superparamagnetic iron oxide nanocrystals or

quantum dots, show interesting intrinsic properties for imaging and therapy.

2.1 NON TARGETING NANOPARTICLES FOR THERAPY AND IMAGING OF B CELL

MALIGNANCY

Some anticancer encapsulation nanosystems have made their way to the market
(Pattni et al.,, 2015). Liposomal formulations encapsulating drugs, such as
doxorubicin, are commercialized under the name of Myocet, Doxil, Lipodox and
Caelyx. Related to hematological malignancy, a phase lll clinical trial is open for a
liposome combinational delivery of two cytotoxic drugs (cytarabine and daunorubicin)
for high risk acute myeloid leukemia (clinicaltrials.gov identifier NCT01696084) (Shi
et al., 2017). With the ultimate goal of achieving both spatial and temporal control of
drug delivery, nanocarriers have evolved from the mere "sustained" release to
"triggered" release (Figure 3). Indeed, in cancer, abnormal local conditions, such as
pH, enzymatic activity or concentration in reactive oxygen species, can trigger the
delivery of the drug. In addition to these endogenous signals, nanocarriers can also
release their load on the effect of applied light, ultrasounds or a magnetic field

(Bhattacharya et al., 2016; Kamaly et al., 2016).
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In the topic of B cell malignancy, only few nanoparticles-based therapies are in
development (Stephenson and Singh, 2017) (Shi et al., 2017). Among all the recent
clinical-stage nanomedicines (Shi et al., 2017), a phase Il clinical trial is open to
evaluate a liposome, carrying a DNA oligonucleotide against the anti-apoptotic
protein BCL-2, in relapsed or refractory B cell ymphomas (clinicaltrials.gov identifiers
NCT01733238 and NCT02226965). Similar approaches of gene/RNAi delivery by
silica-based nanoparticles to target B-cell ymphoma were described in mouse model
(Martucci et al., 2016). Additionally, between 2011 and 2014, a phase I/l clinical trial
was opened to evaluate the safety and tolerability of a poly(ethylenimine)-based
transfecting polyplex carrying siRNA against elF5A and a plasmid expressing a pro-
apoptotic mutant of elF5A under the control of a B cell specific promoter. This
therapeutic agent was evaluated in relapsed or refractory B cell malignancies
(clinicaltrials.gov identifier NCT01435720). Finally, an immunostimulant lipoplex
composed of liposome and plasmid DNA (Chang et al., 2009) is in a phase | clinical

trial in relapsed or refractory leukemia (clinicaltrials.gov identifier NCT00860522).

Tumors are currently diagnosed using various imaging modalities such as
radiography, computed tomography (CT), positron emission tomography (PET) and
magnetic resonance imaging (MRI) (Salem et al., 2014)(Navarro et al.,, 2017).
However, the diagnosis of hematological malignancies can be challenging due to the
diversity of imaging appearances and clinical behavior of these diseases (Navarro et
al., 2017). Multimodal imaging approaches have been proposed to overcome these
limitations, since they offer the ability to image with different resolutions and over
different temporal and spatial scales. Cistaro et al. demonstrated the high potential of
combined PET (using "®F-fluorodeoxyglucose) and MRI (using paramagnetic contrast

agent) in the evaluation of pediatric patients with ALL (Cistaro et al., 2017). By their
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work, they highlighted the real need of developing hybrid PET/MRI instruments and

dual contrasts agents.

In line with that idea, a variety of nanoparticles has been designed to combine
several imaging modes, multiple therapies, (e.g. photothermal therapy and
conventional chemotherapy) or imaging and therapeutic functions (theranostics) and
therefore holds great prospects in cancer treatment (Riley and Day, 2017). Among
others, our group has recently reported on a vesicular platform, with a shell of
inorganic nanoparticles named Hybridosomes® (Sciortino et al., 2016). The large
number of nanoparticles forming the shell is a clear advantage for imaging
applications, since an enhanced contrast is observed. Initially designed for MRI,
these Hybridosomes® can not only be prepared from iron oxide superparamagnetic
nanoparticles but also from any types and combinations of inorganic particles with
imaging or therapeutic properties. Therefore, those multimodal nano-objects are
suitable tools for multimodal imaging as well as theranostics. The feasibility of a
theranostic approach has been demonstrated in acute myeloid leukemia patients
where in vivo molecular imaging of CXCR4, a crucial protein involved in the retention
of hematopoietic stem cells within the hematopoietic niche, has been achieved by
means of positron emission tomography (Herhaus et al., 2016). However, as far as
we know, there is still no open clinical trial using those combined strategies in B cell

malignancies.

2.2 CD19-TARGETING NANOPARTICLES

The efficiency of imaging and treatment can be greatly improved by targeting

specifically the malignant cells. As mentioned above, CD19 is currently the antigen of

12
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choice used to target B cells. Recently, CD19-targeting nanoparticles were designed
for nanomedicine by grafting anti-CD19 antibody or its derivatives (Fab, F(ab),...) to
the nanoparticles ). As an example, Cheng et al. produced liposomal
doxorubicin targeted via anti-CD19 monoclonal antibody fragments: either the single-
chain variable fragment (scFv), or the variable fragment (Fab), or the monoclonal
antibody (mAb) . The authors compared the efficacy of the three targeted
constructs and concluded that the scFv single-chain variable fragment would be
more suitable for development of immunotherapy for the following reasons: i) it
contained less foreign peptides, ii) the production was easier, and iii) the cost of
production was more economical thanks to the expression in bacterial systems
(Cheng and Allen, 2008). Typically, four types of chemical functions from the
antibody or its derivatives (-NH,, -COOH, -SH, -carbohydrates) can be used for
covalent grafting to the nanoparticle. The use of spacers such as PEG derivatives
lowers the risk of antibody inactivation (Chen et al., 2016; Manjappa et al.,
2011)(Nguyen et al., 2010)(Hong et al., 2015). Alternative strategies were also
proposed, as the noncovalent strepatividin/biotin conjugation (Procko et al., 2014)

(Dong et al., 2014).

2.2.1 Imaging with anti-CD19 nanoparticles

Few anti-CD19 grafted nanoparticles for in vitro imaging have been published so far.
Nguyen et al. designed pegylated SERS (Surface Enhanced Raman Scattering) gold
nanoparticles conjugated to human anti-CD19 antibody that showed specific in vitro
targeting towards chronic lymphocytic leukemia (CLL) (Nguyen et al., 2010; Walker
et al., 2012). The functional SERS nanoparticles were composed of a gold core onto

which a reporter dye was adsorbed. The signals were detected by dark-field
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microscopy and Raman spectrometry and showed no interference with conventional
fluorescent stains used in histology. Ramos B cells labeling through anti-CD19
mediator was demonstrated by Dong et al. by grafting an anti-CD19 antibody onto
Ag@SiO, core-shell nanoparticles (Dong et al.,, 2014). In this study, the authors
monitored the metal-enhanced fluorescence of a reporter (rhodamine B) adsorbed on
the surface of the nanoparticles. However, to the best of our knowledge, in vivo

imaging using anti-CD19-grafted-nanoparticles has not been reported yet.

2.2.2 Therapy with anti-CD19 nanoparticles

2.2.2.1 Chemotherapy: drug delivery

Nanoparticles decorated with anti-CD19 have already been reported as effective
carriers for drug delivery on in vitro models and preclinical studies (Table 2).
Doxorubicin, an inhibitor of topoisomerase involved in DNA synthesis, is frequently
the drug of choice for proof-of-concept, as the cytotoxic effect of this drug is well
demonstrated on B cells. A doxorubicin loaded immunoliposome targeting B
lymphocytes showed a 6-fold more cytotoxic in vitro activity on B cells than non-
targeted liposomes (Lopes de Menezes et al., 1998). Similar results were observed
in vivo with an improved survival of mice injected with anti-CD19-doxorubicin-
liposomes compared to non-targeted liposomes or free doxorubicin treatments
(Lopes de Menezes et al., 1998). Doxorubicin was also encapsulated into block-
copolymer nanoparticles grafted with anti-CD19. A clathrin-dependent internalization
pathway was identified, suggesting that the physiological internalization pathway of
CD19 was conserved. In comparison to the administration of free doxorubicin, both
improved in vitro apoptosis of CD19 positive cells and better survival of treated mice

were demonstrated (Krishnan et al., 2015). In vivo, mice xenografted with B cells and
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exposed to anti-CD19-liposomes containing doxorubicin or vincristine demonstrated
a higher cell cytotoxicity and showed a longer survival time than mice exposed to free
drug (Sapra and Allen, 2004). Those anti-CD19-liposomes showed in vitro a greater
binding, a more effective internalization and an equivalent cytotoxicity on B cells
compared to anti-CD20-liposomes (Sapra and Allen, 2004).

Other inhibitors of B-cells than doxorubicin or vincristine have also been evaluated
and incorporated into nanoparticles. As an example, the C61 molecule (1,4-bis (9-O-
dihydroquinidinyl) phthalazine/hydroquinidine 1,4-phathalazinediyl diether) was
identified as a potent inhibitor of the cytoplasmic protein SYK (spleen tyrosine
kinase), an important regulator of B cell apoptosis (Table 2). Myers et al.
demonstrated that a liposomal nanoparticle formulation entrapping C61 and
decorated with anti-CD19 caused in vitro the apoptosis of pre-B ALL cells, twice
more than the non-decorated liposomes (Myers et al., 2014). Immunocompromised
NOD/SCID mice were then xenografted with pre-B ALL cells, and injected with C61-
liposomes decorated with anti-CD19. Tumor cell viability decreased and mice did not
develop leukemic splenomegaly, thus showing a better therapeutic efficacy than
irradiation with 2Gy y-rays. In addition, the combination of C61 loaded anti-CD19-
liposomal nanoparticles, with exposure to low dose of radiations, caused the

abrogation of B leukemia in engrafted mice (Myers et al., 2014).

In addition, multifunctional immunoliposomes grafted with several antibodies were
shown to exhibit higher selectivity, greater binding affinity, and enhanced apoptosis
induction of B-CLL cells (Woyach et al., 2014). Yu et al. also proposed a dual ligand
conjugation on immunoliposomes (Yu et al., 2013). The authors first evaluated the

level of expression of CD19, CD20 and CD37 antigens in several B cell lines and
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primary B-CLL cells, and found comparable level for CD19 and CD37. They also
calculated the internalization rate of the three antibodies in lymphoma cells (Raji
cells) and confirmed the choice of anti-CD37 as the primary ligand for specific
targeting of B cells. Then they measured the binding efficacy of single or mixtures of
anti-CD19, anti-CD20 and anti-CD37 on B-CLL cells isolated from patients. Greater
binding efficacies occurred with dual combinations of anti-CD19 and anti-CD20, with
anti-CD37 antibody. The antibody ratio was finally optimized to improve this

synergetic effect.

Note that the combination of several specific antibodies is also a promising strategy
to overcome the variability in the expression of target antigens among patients. In
this context, hydroxychloroquine, an anti-malaria and anti-rheumatic drug, has been
encapsulated in order to overcome pharmacokinetic obstacles and to deliver a larger
amount of this apoptotic drug into B-CLL cells from patients. As an example, Mansilla
et al. encapsulated hydroxychloroquine in PEG-PLGA nanoparticles mono-
functionalized by anti-CD19 antibody or bi-functionalized by anti-CD19 and anti-
CD20 antibodies (Mansilla et al., 2010). The authors showed a significant induction
of apoptosis of B-CLL cells with mono- or bi-functionalized nanoparticles compared

to non-functionalized nanoparticles.

2.2.2.2 Nanoparticle-based immunotherapy

An innovative strategy consists in using nanoparticles exposing antibodies in order to
stimulate the production of lymphocytes, or even to bridge malignant cells to killer T
cells (see the graphical abstract). Schitz et al. designed nanoparticles termed

antigen-specific T cells redirectors (ATR). The ATR nanoparticles were conjugated to
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two antibodies, an anti-TCR and an anti-CD19. The ATR nanoparticles provided a
physical proximity between T cells and tumor cells, and redirected T cells to kill tumor
cells (Schitz et al., 2016). In vivo assays on mice xenografted with lymphoma cells
and injected with ATR nanoparticles showed smaller tumors and an improved

survival compared to control mice.

3 CD19-TARGETED CHIMERIC ANTIGEN RECEPTOR (CAR) T CELLS

IMMUNOTHERAPY

An alternative to nanoparticles for targeting tumor cells is to take advantage of other
cells. For years, most of hematological neoplasms have been treated by
hematopoietic stem cell transplantations. The transplanted allogeneic hematopoietic
stem cells kill residual malignant cells by a graft-versus-tumor effect. This cell therapy
approach, used to fight leukemia, lymphoma or myeloma, leads to either remission or
immune control of the malignancy; however, some patients relapse. On the other
hand, many therapeutic approaches tend to modulate the immune response to
eliminate tumor cells. Immunotherapy has marked the past years by generating
extraordinary advances in clinical applications for cancer treatment.

Cell immunotherapy harnesses the power of both cell therapy and immunotherapy,
and is at the origin of tremendous clinical progresses in the past decade
(Ramachandran et al., 2017). For the purpose of the review, we will focus on CD19

antibody-based cell immunotherapies that target B cell neoplasms.
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3.1 IMMUNOTHERAPIES: ANTIBODY-BASED AND ADOPTIVE CELLULAR THERAPIES

3.1.1 The concept of CAR T cell: retargeting a cytolytic immune cell by genetic-
modification to eliminate a tumor cell

T lymphocytes are cells that play a central role in cell-mediated immunity. Different
subsets of T cells achieve cytolytic, regulatory or memory roles. Genetically
retargeting T cells against tumor surface antigens to trigger cytotoxic mechanisms
against malignant cells is one of the principles of adoptive cell therapy. More
precisely, the engineering of T cells to express a chimeric antigen receptor (CAR) is
the most common gene-modifying strategy that is being investigated. CARs are
synthetic receptors that direct the genetically engineered T cells against tumor
surface antigens, for instance CD19 antigen. Adoptive cell therapy using gene-
modified T cells has emerged as an exciting therapeutic approach for the treatment

of cancer (Porter et al., 2011; Kochenderfer et al., 2012 ; Brentjens et al., 2013).

3.1.2 The main biological challenges for an effective antibody-based adoptive cellular
therapy

Conceptually, many challenges should be faced to achieve an in vivo therapeutic
efficacy. The first one is that CAR T cells must be able to persist in vivo, and then
undergo cellular expansion (Grupp et al., 2013). They will also have to infiltrate tumor
tissues (in case of solid tumors), then to engage their target antigen expressed on
tumor cells, and finally, to exert their cytolytic, proliferative, and cytokine secretory
activities within the tumor microenvironment to eliminate malignant cells (review in
(Beatty and O’Hara, 2016)).

Adoptive T cell therapy with chimeric antigen receptor engineered T cells (CAR T
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cells) has shown substantial clinical results against B cell malignancies (Porter et al.,
2011; Kochenderfer et al., 2012 ; Brentjens et al., 2013). The fact that CAR T cell
therapy approach has proven to be of some effectiveness across a range of
hematological malignancies (Gill and June, 2015) may be partly explained by the
choice of a relevant target antigen (for instance CD19) and by the fact that those
malignancies reside in the natural sites that adoptively transferred T cells naturally

invade (review in (Newick et al., 2016).

3.1.3 The choice of a relevant target antigen: CD19 gene therapy

As mentioned previously, CD19 is a reliable target antigen for antibody-based
therapy (review in (Hammer, 2012)(Li et al., 2017)). More than half of all CAR-
modified T cell studies in hematological malignancies have targeted CD19 antigen
(review in (Beatty and O’Hara, 2016)). CD19-specific CAR T cells have demonstrated
potent activity in B cell ALL and lymphomas including CLL and non-Hodgkin
lymphoma (Porter et al., 2011 ; Grupp et al., 2013; Maude et al., 2014 ; Davila et al.,

2014 ; Lee et al., 2015 ; Brudno et al., 2016 ; review in Beatty and O’Hara, 2016).

3.1.4 The role of CAR: conferring T cell the ability to persist and expand in vivo and to

exert cytolytic activity

3.1.4.1 Design of CAR

The chimeric antigen receptor (CAR) is composed by two main modules: (i) an
extracellular component that recognizes a cell surface protein (e.g. CD19) (this
extracellular moiety is a single-chain variable fragment (scFv) derived from an

antibody) linked to (ii) an intracellular component consisting in T cell signaling
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domains of the T cell receptor (e.g. CD3() including co-stimulatory domains (e.g.
CD28, or 4-1BB) involved in T cell activation (Figure 5) (review in (Beatty and
O’Hara, 2016) and (Geyer and Brentjens, 2016)). The extracellular component is
responsible for redirecting T cell specifically to the human tumor antigen whereas the
intracellular component sustains T cell activation, supporting cell expansion and
cytokine release resulting in cytolytic activity.

Intense work is done to optimize each module: the extracellular component which
acts as the target-binding domain of the CAR, the hinge region connecting
extracellular and intracellular component (Hudecek et al., 2013), and the intracellular
component for an effective T cell proliferation and differentiation to mature effector T
cells. The successive generations of CD19 CAR T differ in the number and origin of
the intracellular co-stimulatory domains (Figure 5) (e.g. 4-1BB or CD28) (Savoldo et

al., 2011 ; Porter et al., 2011 ; Maude et al., 2014 ; Park et al., 2016).

3.1.4.2 Mechanism of action of CAR T cells

The binding of the anti-CD19 scFV to CD19 antigen of tumor cell surface (the
resulting complex is named the immune synapse) sends a signal through the CAR to
the effector T cell. This signal results in the activation of the T cell and in the release
of soluble molecules, perforin, granzyme and pro-apoptotic ligands, that kill the tumor
cells. Additionally, activated T cells secrete proinflammatory cytokines (e.g. interferon
IFN-y, and IL-2), amplifying the immune response (Davenport et al., 2015) (Geyer
and Brentjens, 2016), and leading to the expansion of CAR T cells. The range of in
vivo expansion of CAR T cells has been reported between 100- to 10 000- fold

(Grupp et al., 2013).
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3.2 CURRENT CLINICAL OUTCOMES, BENEFITS AND LIMITATIONS OF CD19 CART

THERAPY

3.2.1 Clinical outcomes

Many patients go into remission with standard chemotherapy for B cell malignancies.
However, children and adults with relapsed or refractory B cell ALL have a poor
prognosis. Substantial clinical efficacy has been demonstrated with a therapy based
on CAR-modified T cells targeted to CD19. Approximately 70% of patients underwent
complete or at least partial response to treatment with chimeric antigen receptor
CAR-modified T cells targeted to CD19 (Porter et al., 2011; Kochenderfer et al., 2012
; Brentjens et al., 2013 ; Grupp et al., 2013 ; Maude et al., 2014 ; Davila et al., 2014 ;
Lee et al., 2015). Results are less impressive with CLL or with B cell non-Hodgkin
lymphoma but still subsets of patients show significant benefits (review in (Geyer and

Brentjens, 2016). Clinical trials are ongoing for multiple myeloma.

3.2.2 Advantages

In vivo expansion and persistence of CAR T cells is a clear determinant of clinical
benefit (Grupp et al., 2013 ; Porter et al.,, 2015 ; Beatty and O’Hara, 2016). In
addition, the natural trafficking of CAR T cells within the blood, lymph nodes, and
bone marrow where they encounter malignant cells also favors the efficacy of the
therapy (Beatty and O’Hara, 2016). Furthermore, it appears that the accessibility to
malignant cells is less hindered by the tumor microenvironment in those tissues

compared to solid tumors (Geyer and Brentjens, 2016 ; Newick et al., 2016).
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3.2.3 Limitations

3.2.3.1 Genetic modification of autologous T cells

First, each patient is infused with his own T cells. This specificity limits any large-
scale manufacturing process and anticipated stocks. Then, autologous T cells are
subjected to genetic modifications by retrovirus, lentivirus or non-viral gene transfer
followed by in vitro stimulation. Currently, the complicated and individualized
production of autologous CAR T cells may be one, among others, of the bottlenecks
that reduce accessibility to this personalized therapy to many people. Some
strategies using universal T cells (i.e. that do not come from the patient) are also in
development. Suboptimal expression of the CAR at the surface of CAR T cells may
also limit the benefit of CAR T cell therapies. Recently, Eyquem et al. have proposed
that directing a CD19-specific CAR to the T cell receptor a constant (TRAC) locus not
only results in uniform CAR expression in human peripheral blood T cells, but also
enhances T cell potency, with edited cells vastly outperforming conventionally

generated CAR T cells in a mouse model of ALL (Eyquem et al., 2017).

3.2.3.2 The need of lymphodepletion for the patient

The purpose of chemotherapy, whose objective is to achieve lymphodepletion prior
to CAR T cells infusion, is to create a more favorable environment for CAR T cells.
Most studies corroborated the notion that host lymphopenia (i.e. a low number of
lymphocytes in the blood) facilitates the expansion of adoptively transferred T cells.
Whether lymphodepletion might further enhance the activity of CAR T cells in this

setting remains unclear (Brudno et al., 2016 ; Turtle et al., 2016). To date, induction
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of lymphodepletion prior to infusion of CAR T cells continues to be often incorporated

in clinical trials using CAR T cells.

3.2.3.3 Toxicity for the patient

The medical community will have to overcome clinical challenges related to CD19-
targeted CAR T cells (Geyer and Brentjens, 2016; Park et al., 2016). Major side-
effects, particularly cytokine release syndrome, neurological toxicities, and B cell
aplasia have been reported in all clinical trials using CD19-targeted CAR T cells. The
cytokine release syndrome is a severe inflammatory response syndrome that
appears within the hours to days following CAR T cell infusion. Clinical features
include fevers, muscle pain, malaise, and, in more severe cases, hypoxia,
hypotension, and occasionally renal dysfunction and coagulopathy. The cytokine
release syndrome is characterized by elevation of pro-inflammatory cytokines (e.g.
IL-6) and T cell activation and expansion. Tumor burden is positively correlated with
the risks of severe cytokine release syndrome and neurotoxicity (Brentjens et al.,
2013) (Turtle et al., 2016). The cytokine release syndrome can be life-threatening
and requires intensive supportive care. Mitigating strategies to reduce cytokine
release syndrome frequency and severity comprise anti-IL-6 receptor antibody,
steroids, and possibly a protocol-specified algorithm to potentially start pre-emptive
treatments (Maude et al., 2014; Lee et al., 2014 ;Turtle et al., 2016; Ruella et al.,
2017).

Reversible neurologic toxicity has been observed after CAR T cell infusion, including
delirium, seizure-like activity, confusion, word-finding difficulty, or aphasia.

Finally, CD19-targeted CAR T cells therapy shows “on-target, off-tumor” toxicity that

generates B cell aplasia (Porter et al., 2011 ;Grupp et al., 2013; Maude et al., 2014).
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Limiting B cell aplasia for CD19-targeted CAR T cells has been successfully
managed with intravenous immunoglobulin replacement therapy (Frey and Porter,
2016). Novel approaches to limit B cell aplasia are under investigation as the use of

antigen-specific inhibitory CAR to protect normal B cells (Fedorov et al., 2013).

3.2.3.4 (CD19-antigen escape

Loss of expression of the CD19-target antigen resulting in an antigen escape (e.qg.
CD19-negative relapse) may limit the benefit of CD19 CAR T cells therapy (Grupp et
al., 2013). Tumor antigen escape has emerged as a main challenge for the long-term
disease control (review in (Wang et al., 2017;Velasquez and Gottschalk, 2017)).
Studies are going on to understand the mechanism of loss of CD19 expression and
overcome this difficulty. Braig et al. reported emergence of CD19-relapses due to
CD19 mRNA splice variants (Braig et al., 2017). Zah et al. proposed a design of
bispecific CARs that triggered robust cytotoxicity against target cells expressing
either CD19 or CD20 and controlled both wild-type B cell lymphoma and CD19

mutants with equal in vivo efficacy (Zah et al., 2016).

3.2.3.5 Infused dose, composition, and control of expansion and function of CAR T cells

So far, the different clinical trials have not led to the identification of a clear
correlation between higher CAR T cell infused dose and greater efficacy or CAR T
cell persistence (Porter et al., 2011 ; Grupp et al., 2013; Maude et al., 2014 ; Davila
et al., 2014 ; Lee et al., 2015 ; Brudno et al., 2016) (review in (Park et al., 2016;
Geyer and Brentjens, 2016)). Importantly, the efficacy of CAR T cells relies on their
activation in response to CD19 antigen and expansion in vivo, making the magnitude

of their reactivity unpredictable (Grupp et al., 2013). For instance, anti-CD19 CAR T
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cells have been shown to proliferate in excess of 100,000-fold in some patients,
ultimately accounting for over 50% of circulating lymphocytes. The lack of control
over CAR T cells activation and expansion in vivo is a limit to predict the therapeutic
response.

Multiple parameters provide clues to explain this unpredictability. The composition of
the infused therapeutic agent is source of variability. So far, CAR T cells are
generated from autologous T cells, making the received therapeutic agent different
for each patient (Sommermeyer et al., 2016) (Turtle et al., 2016). In preclinical
studies, where mice were injected with a same pool of CAR T cells, a better
correlation between the infused dose and the xenografted mouse survival was
observed (Sommermeyer et al., 2016). More precisely, the variability of CAR T cells
encompasses extrinsic parameters, from the efficacy of genetic modification to the
expression of the CAR at the surface of CAR T cells, but also intrinsic interindividual
parameters including composition of CD4+ and CD8+ T cells. In CAR T therapy,
CD4+ CAR T cells are responsible for cytokine production whereas CD8+ CAR T
cells trigger direct antitumor effects. The ratio of CD4+/CD8+ CAR T cell subsets
may be of importance in the balance between efficacy and toxicity (Park et al., 2016).
In most reported trials, patients received CAR T products comprising random
compositions of CD4+ and CD8+ T cells. In contrast, Sommermeyer et al. and Turtle
et al. showed that CAR T cell products generated from defined T cell subsets (1:1
ratio of CD4+ and CD8+ CAR T cells) can provide uniform potency compared with
products derived from unselected T cells and induce complete remission without a
high rate of toxicity in patients with a high tumor burden (Sommermeyer et al., 2016 ;
Turtle et al., 2016). Approaches to limit expansion and activation are also underway.

Rodgers et al. propose a method to control CAR T cells using peptide-engrafted
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antibody-based molecular switches that act as a bridge between the target cell and
CAR T cells (Rodgers et al., 2016).

Interindividual variation in response to the treatment can also be attributed to
difference in lymphodepletion between each patient, or to difference in immunological
clearance that will impact the persistence of the infused and expanded CAR T cells.
Altogether, the optimal dose and composition of the CAR T cell product remain under
development in order to achieve a better predictability in response to the therapeutic

agent and to balance toxicity and efficacy.

4 PERSPECTIVES: HOW NANOPARTICLES AND CAR T CELL THERAPY

COULD BE COMPLEMENTARY?

4.1 MULTIMODALITY

The efficacy of CAR T cell therapy relies on the multimodality of the therapeutic
response. CAR T cells target tumor cells, trigger cytolytic activity, and ensure their
own expansion. We can envision that the future of nanomedicine will benefit from the
same feature: the multimodality. It is clear that nano-objects, and among them
Hybridosomes® (Sciortino et al., 2016), can address many of the challenging issues
of hematological cancer diagnosis and therapy. In particular, nanoparticles could play
a significant role for the potentiation of, and the cooperation with CAR T cell therapy.
Their complementarity (in terms of function, distribution and time of administration)

can be envisioned to fulfill at least three objectives: (i) to track malignant cells and
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CAR T cells to monitor their biodistribution and expansion, (ii) to increase tumor
accessibility, and (iii) to manage CAR T cell toxicity and modulate the expansion of

CAR T cells.

4.2 TO TRACK MALIGNANT AND CAR T CELLS

Since the proof-of-concept of CAR T cells has been validated, current developments
include the control of cell expansion or avoidance of CD19 escape. There is a need
for noninvasive tracking of the transfused T cells in patients to determine their
biodistribution, viability, and functionality (review in (Liu and Li, 2014)). Several
strategies based on nanoparticle contrast agents have been proposed using either ex
vivo preloaded nanoparticles on CAR T cells, or in vivo administration of
nanoparticles after CAR T cell infusion. For instance, in mouse model, CAR T
biodistribution has been monitored through radiolabeled-nanoparticles or contrast-
agent-nanoparticles loaded into CAR T cells prior to cell infusion (Bhatnagar et al.,
2013;Bhatnagar et al., 2014).

Furthermore, detecting the localization of tumor cells is of particular importance in the
case of hematological cancer, since hematological malignant cells are intrinsically
disseminating. In addition, in situ imaging alternatives to the invasive sampling of
bone marrow are desirable for diagnosis and for residual disease follow-up. By
proposing efficient targeting contrast agents, nanomedicine can greatly improve the
diagnosis, and beyond, the determination of localization of tumor cells (Kobayashi et

al., 2005).
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43 TO IMPROVE TUMOR ACCESSIBILITY

A recent statistical review of the literature revealed that less than 1% of the injected
nanoparticles systemically reaches the malignant cells in solid tumors, compromising
their translation into clinical use (Wilhelm et al., 2016). This figure is due both to
nanoparticle uptake by the immune system, and to their poor mobility into the tumor
microenvironment. Although hematological malignancies differ from other solid
tumors, some limitations of the CAR T therapy due to limited access to specific
accumulation sites may be observed as well. According to cancer type,
hematological malignant cells originate from the bone marrow (e.g. leukemia,
myeloma) or lymph node (e.g. lymphoma), and infiltrate blood stream and solid
tissues. The bone marrow niche is a very complex environment essentially
composed of a dense network of small arterioles and sinusoids, and of various cell
types within an extracellular matrix (Wu et al., 2008) (Morrison and Scadden, 2014)
(Gattazzo et al., 2014)(Schepers et al., 2015). Leukemic stem cells, as well as
hematopoietic stem cells, are dependent on those cells and extracellular components
for their emergence, homing and survival. Disruption of those interactions
participates in the efficacy of the therapy.

The combination of the specific properties of CAR T cells and nanoparticles seems
promising to enhance the efficacy of treatments. Indeed, CAR T cells will guarantee
longer circulation time in the blood stream and specific recognition of B cells,
whereas nanoparticles can bring advantageous features such as degradation of the
extracellular matrix, disruption of cell-cell interactions, or thermal stimulation. An
advance in this direction was already reported in the literature. In mouse studies,
Kennedy et al. used T cell as chaperones for gold nanoparticle delivery to enhance

the efficacy of nanoparticle-based photothermal therapies and imaging applications
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by increasing accumulation at tumor site (Kennedy et al., 2011). Another innovative
strategy, inspired by motile and invasive cells, would be the active enzymatic
degradation of the tumor matrix by protease that can be associated with the
nanotherapeutic system. For instance, iron oxide nanoparticles coated with
collagenase were magnetically driven through in vitro extracellular matrix, at a rate
similar to invasive cells (Kuhn et al.,, 2006). Other proteolytic surfaces include
bromelain, an enzymatic complex belonging to the papain family and extracted from
pineapple which contains a mixture of 9 proteases with distinct pH and enzymatic
activities (Parodi et al., 2014). Local heating triggered by external sources can also
be used to alter the tumor environment and enhance accessibility to malignant cells,
based on gold nanoparticles (Gormley et al., 2013; Smith et al., 2015).

An alternative strategy would be the pretreatment with therapeutic nanoparticles prior
to CAR-T infusion. In this line, nanoparticles targeting the bone marrow niche could
also be utilized to specifically deliver high doses of lymphodepleting agents prior to
CAR T infusion. Similarly, pre-treatment with drugs, specifically targeting the
interaction of leukemic stem cells with their bone marrow niches, may be useful to
mobilize those cells and render them more accessible to CAR T cells in the marrow
or the blood stream. Among others, inhibitors of the adhesion molecule E-selectin, or
inhibitors of the chemoattractant stromal-cell-derived factor 1 (SDF-1) could be
proposed because leukemic stem cells are dependent on those molecules for their
homing (Sipkins et al., 2005)(Krause and Scadden, 2015)(Schepers et al., 2015).
Identification of additional specific factors in B cell malignancies could be of interest
for mobilizing B cells and enhancing CAR T cell therapy, as exemplified by the role of
CD44, or various selectins and their ligands in chronic myeloid leukemia or acute

myeloid leukemia (Krause et al., 2006)(Jin et al., 2006)(Krause et al., 2013).
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4.4 TO MANAGE TOXICITIES OF CAR T CELLS AND MODULATE THE EXPANSION OF
CAR T CELLS

Major toxicity such as severe cytokine release syndrome is intrinsically related to
CAR T efficacy, and current developments aim at controlling it. Current strategies to
allow preferential removal of CAR T cells include genetic “safety switch” or drug
sensitivity (review in (Ranganathan and Foster, 2016)). In this perspective,
nanoparticles could be specifically designed to target CAR T cells, making possible a
selective apoptosis of those cells or a selective removal of those cells. In this line, an
innovative strategy related to hematological diseases is the magnetic sorting of sick
cells, after attachment of a magnetic particle. In some cases, such as malaria, the
intrinsic magnetic properties of infected cells even allow magnetic sorting of
unlabeled cells (Zborowski and Chalmers, 2011). Nanoparticles targeting tumor cells
or CAR T cells could be used to lower the tumor burden (lymphodepletion) before
treatment or alternatively remove CAR T, after treatment or in case of excessive

expansion of CAR T cells.

5 CONCLUSION

Nanomedicine and cell therapy are two fields that have grown in parallel. Yet, those
approaches aim ultimately at common goals, to achieve long remission and ideally
the cure of the patients. In this review, based on the example of developing tools to

target B cell malignancy (mostly anti-CD19 nano-objects and anti-CD19 CAR T

30



736

737

738

739

740

741

742

743

744

745

746

cells), we have discussed their specificity, limitations and potential complementarity.
It appears that even if CART T cell therapy has revolutionized management of
patients presenting poor prognosis B cell malignancy, improvements are needed,
especially to predict the therapeutic response, to control the intensity and persistence
of the treatment, to increase tumor accessibility of the therapeutic agent to leukemic
stem cell niches, and to visualize residual leukemic clones, and thus prevent
relapses. Therefore, therapeutic developments could benefit from nanoparticles
advantages -mainly their multimodality combining imaging and loading capacity, their
tendency to accumulate at tumor sites for solid tumors and their relative easiness to

be produced- to fill those requirements.
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TABLES

Table 1: Main chemical and physical properties of the different types of nanoparticles
used in nanomedicine and their principal applications. Note that the given size
corresponds to the primary nano-object. In the case of small nanoparticles (NP) such
as dendrimers or quantum dots (QD), surface modification with PEG or other

macromolecules result in larger dimension.

Size (nm) Organic/Inorganic Principal application

Liposome 30-500 organic encapsulation
Polymer NP 10-200 organic encapsulation
Polymersome 50-1000 organic encapsulation

encapsulation /

Dendrimer <10 organic . .
imaging

Solid Lipid NP

. . >1 i |ati
(and emulsion based particles) 00 organic encapsulation

encapsulation /

Silica NP all range inorganic . .
imaging
Quantum dot 5-20 inorganic imaging
SPION 5-100 inorganic imaging
Au NP 5-100 inorganic imaging / therapy
imaging /
Hybridosome® 80-120 organic/inorganic encapsulation /
therapy
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Table 2: Nanoparticles (NP) grafted with anti-CD19 antibody and their
applications in nanomedicine.
Abbreviation: Ag Silver; Au: Gold; Chol: Choline; DOTAP: 1,2-dioleoyl-3-trimethylammoniumpropane;
DOPE: dioleoylphosphatidylethanolamine; DSPE: Distearoylphosphatidylethanolamine; EggPC: Egg
yolk phosphatidylcholine; HD37-CCH: Hybridomas HD37-c-myc-Cys-His5 scFv; HSPC: hydrogenated
soy phosphatidylcholine; LNP: liposomal nanoparticle ; MHC-Ig: Major Histocompatibility Complex-
Immunoglobulin; NHS: N-hydroxysuccinimide; PEG: Polyethylene glycol; PLGA: poly(lactic-co-glycolic
acid); SERS: Surface Enhanced Raman Scattering; SiO2: Silicon dioxide ; SYK: Spleen Tyrosine

Kinase; TCR: T cell receptor

Size
NP type Composition Targeting agent (nm) Application Reference
doxorubicin carrier Loves de Menezes et
Liposome PEG-DSPE anti-CD19 100-120 140-160 pg/umol of P al. 1998
phospholipid ’
HSPC/Chol Alll
Liposome / / anti-CD19 90-110 doxorubicin carrier sapra and Allen,
mPEG-DSPE 2004
SM/Chol Alll
Liposome / / anti-CD19 110-130 vincristin carrier Sapra and Allen,
mPEG-DSPE 2004
anti-CD19 Cheng and Allen
Liposome mPEG, _ -DSPE 80-120 doxorubicin carrier ’
P 2000 hd37-cch fragment 2008
i-CD19 + anti-CD
EggPC/Chol/ anti-CD19 + anti-CD37 / .
Liposome anti-CD19 + anti-CD20 + 100 FTY720 carrier Yuetal, 2013
PEG,,,"DSPE
anti-CD37
Liposome  DSPE-PEG,, -NHS mouse anti-CD19 ~135 C61 carrier Myers et al., 2014
9,4 mg/mL
Polymer anti-CD19 / hydroxychloroquine .
PEG-PLGA . . ~300 carrier Mansilla et al., 2010
NP anti-CD19 + anti-CD20
165 ug/mg of polymer
Polymer ici i
y EG,,,CL,.,TSU,. anti-cD19 ~ 60 doxorubicin carrier 1 erar, 2015
NP 72,1+/-6,4 ug/mgq of polymer
Inorganic Au@PEG human anti-CD19 60-80 SERS cell imaging Nguyen et al., 2010
MGITC = Raman tag
. . . Fluorescence cell
Inorganic Ag@Sio, anti-CD19 100-140 L Dong et al., 2014
imaging
Iron pep-MHC-Ig dimer Targeting
Inorganic or anti-TCR-specific ~50 Redirect T cells against tumor Schiitz et al., 2016

oxide@dextran

with anti-human CD19

cells
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FIGURE LEGENDS

Figure 1: B cell development and differentiation

B cell development begins in bone marrow and progresses through pre pro B cell,
pro B cell, small pre B cell, large pre B cell and immature pre B cell. B cell locates
within the circulatory system from mature B cell stage. The CD19 protein is

expressed from pro B cell stage.

Figure 2: CD19 signaling complex and activation pathways

(A) Schematic representation of the CD19 signaling complex. The CD19 complex is
composed of CD21, CD81 and CD19 transmembrane proteins. CD19 possesses an
intracellular tail with multiple tyrosine-kinase residues involved in signal transduction.
(B) The first pathway of CD19 activation is dependent on the B cell receptor (BCR): it
is a co-receptor for BCR signal transduction. The second pathway is independent of
the BCR: the CD19 complex is able to bind activated complement fragment C3d and

modulates BCR signaling (Figure adapted from (Wang et al., 2012)).

Figure 3: The two main modes of controlled release from carrier nanoparticles
Sustained release can be operated by biodegradable carriers, most often polymeric,
which are progressively eroded, or by porous (silica, polymer...) particles. Trigger-
activated particles deliver their load at once, upon activation by an endogenous or

exogenous trigger.

Figure 4: Natural and engineered antibody formats, and functional groups

available for covalent labeling or bioconjugation
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(A) Schematic representation of full monoclonal antibody (mAb) of 150 kDa and its
scFv derivative of 55 kDa. Functional groups present on the antibodies and available
for covalent labeling or bioconjugation are schematically represented (amine groups,
carboxylate groups, thiol groups and carbohydrate residues). Fab: variable region; Fc
region: constant region; VL: Variable Light chain; VH: Variable Heavy chain; CL:
Constant Light chain; CH: Constant Heavy chain.

(B) Comparison between mAb and its derivatives in terms of size, pharmacokinetics,

valency/specificity and strengths/weaknesses.

Figure 5: Chimeric antigen receptor (CAR)
Chimeric antigen receptor (CAR) of second generation is composed of a targeting
element (here the single chain variable fragment (scFv) of anti-CD19), a

transmembrane domain, a co-stimulatory domain and a signaling domain.
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LIST OF ABBREVIATIONS

ALL: acute lymphoblastic leukemia

Ag: Silver

Au: Gold

BCR: B cell receptor

B-ALL: B cell acute lymphoblastic leukemia

CAR: chimeric antigen receptor,

CL: Constant Light chain;

CH: Constant Heavy chain

Chol: Choline

CLL : chronic lymphocytic leukemia

DOTAP: 1,2-dioleoyl-3-trimethylammoniumpropane

DOPE: dioleoylphosphatidylethanolamine

DSPE: Distearoylphosphatidylethanolamine

EC : European Commission

EDC: (1-ethyl-3-(3- dimethyl-aminopropyl)carbodiimide hydrochloride
EggPC: Egg yolk phosphatidylcholine

EPR : Enhanced Permeation and Retention

Fab: variable region

Fc region: constant region

FDA : US Food-and-Drug-Administration

IFNy : interferon gamma

IL6: interleukin 6

HD37-CCH: Hybridomas HD37-c-myc-Cys-His5 scFv
HSPC: hydrogenated soy phosphatidylcholine

LNP: liposomal nanoparticle

mAb: monoclonal antibody

MGITC: Malachite Green Isothiocyanate

MHC-Ig: Major Histocompatibility Complex-Immunoglobulin
MPS: mononuclear phagocyte system

MRI : Magnetic Resonance Imaging

MRI/CT : magnetic resonance imaging/ computerized tomography
MRI/PET : magnetic resonance imaging/ positron emission tomography
NHS: N-hydroxysuccinimide

NP:nanoparticle

PEG: Polyethylene glycol

PLGA: poly(lactic-co-glycolic acid)

PVP: polyvinylpyrrolidone

QD: quantum dots

RES : reticuloendothelial system

SERS: Surface Enhanced Raman Scattering

SiO2: Silicon dioxide

siRNA:small interference RNA

SMCC: N-succinimidyl 4-(N maleimidomethyl)cyclohexane-1-carboxylate
SPDP: N-succinimidyl 3-(2-pyridylthio)propionate

SPECT: single, photon emission computed tomography
scFv: single-chain variable fragment

SYK: Spleen Tyrosine Kinase

TCR: T cell receptor
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TEM: transmission electron microscopy
UCNPs : up-converting nanoparticles
VL: Variable Light chain

VH: Variable Heavy chain
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