A. A. Belik and W. Yi, High-Pressure Synthesis, Crystal Chemistry and Physics of Perovskites with Small Cations at the A Site, J. Phys.: Condens. Matter, 2014.

N. A. Benedek and C. J. Fennie, Why Are There So Few Perovskite Ferroelectrics?, The Journal of Physical Chemistry C, vol.117, issue.26, pp.13339-13349, 2013.
DOI : 10.1021/jp402046t

URL : http://arxiv.org/pdf/1307.8103

D. M. Giaquinta and H. Zur-loye, Structural Predictions in the ABO3 Phase Diagram, Chemistry of Materials, vol.6, issue.4, pp.365-372, 1994.
DOI : 10.1021/cm00040a007

V. M. Goldschmidt and . Die-gesetze-der-krystallochemie, Die Gesetze der Krystallochemie, Die Naturwissenschaften, vol.14, issue.21, pp.477-485, 1926.
DOI : 10.1007/BF01507527

C. Li, K. C. Soh, and P. Wu, Formability of ABO3 perovskites, Journal of Alloys and Compounds, vol.372, issue.1-2, pp.40-48, 2004.
DOI : 10.1016/j.jallcom.2003.10.017

E. Castillo-martinez, M. Bieringer, S. P. Shafi, L. M. Cranswick, and M. A. Alario-franco, Obtained by High-Pressure and High-Temperature Transformation from Bixbyite, Journal of the American Chemical Society, vol.133, issue.22, pp.8552-8563, 2011.
DOI : 10.1021/ja109376s

A. A. Belik, Y. Matsushita, M. Tanaka, and E. Takayama-muromachi, with Small Ions at the A Site, Chemistry of Materials, vol.24, issue.11, pp.2197-2203, 2012.
DOI : 10.1021/cm3009144

L. Ding, P. Manuel, D. D. Khalyavin, F. Orlandi, Y. Kumagai et al., , In, Tl), Physical Review B, vol.54, issue.5, pp.95-054432, 2017.
DOI : 10.1021/acs.accounts.5b00408

R. D. Shannon, Synthesis of some new perovskites containing indium and thallium, Inorganic Chemistry, vol.6, issue.8, pp.1474-1478, 1967.
DOI : 10.1021/ic50054a009

J. H. Park and J. B. Parise, High pressure synthesis of a new chromite, ScCrO3, Materials Research Bulletin, vol.32, issue.12, pp.1617-1624, 1997.
DOI : 10.1016/S0025-5408(97)00151-7

A. A. Belik, Y. Matsushita, M. Tanaka, and E. Takayama-muromachi, (In1???yMny)MnO3 (1/9???y???1/3): Unusual Perovskites with Unusual Properties, Angewandte Chemie International Edition, vol.321, issue.324, pp.7723-7727, 2010.
DOI : 10.1002/anie.200905997

A. A. Belik, T. Furubayashi, Y. Matsushita, M. Tanaka, S. Hishita et al., Indium-Based Perovskites: A New Class of Near-Room-Temperature Multiferroics, Angewandte Chemie International Edition, vol.321, issue.324, pp.6117-6120, 2009.
DOI : 10.1002/anie.200902827

K. Fujita, I. Yamada, T. Matoba, S. J. Kim, P. Gao et al., Room-Temperature Polar Ferromagnet ScFeO3 Transformed from a High-Pressure Orthorhombic Perovskite Phase, J. Am. Chem. Soc, vol.136, issue.15, pp.15291-15299, 2014.

X. Rocquefelte, M. Fukuzumi, P. Manuel, A. J. Studer, C. S. Knee et al., LiNbO3-Type InFeO3: Room- Temperature Polar Magnet without Second-Order Jahn? Teller Active Ions, Chem. Mater, vol.28, pp.6644-6655, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01381124

W. Yi, Q. Liang, Y. Matsushita, M. Tanaka, and A. A. Belik, with Antiferromagnetic Order and Field-Induced Phase Transition, Inorganic Chemistry, vol.52, issue.24, pp.14108-14115, 2013.
DOI : 10.1021/ic401917h

A. Boothroyd, Sc2NiMnO6: A Double-Perovskite with a Magnetodielectric Response Driven by Multiple Magnetic Orders, Inorg. Chem, vol.54, pp.8012-8021, 2015.

C. I. Thomas, M. R. Suchomel, G. V. Duong, A. M. Fogg, J. B. Claridge et al., Structure and magnetism of the A site scandium perovskite (Sc0.94Mn0.06)Mn0.65Ni0.35O3 synthesized at high pressure, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.145, issue.1, 2014.
DOI : 10.1006/jssc.1999.8267

K. Uusi-esko, J. Malm, N. Imamura, H. Yamauchi, M. R. Karppinen et al., Characterization of RMnO3, High-Pressure Synthesized Metastable Perovskites and Their Hexagonal Precursor Phases. Mater

Y. Kumagai, A. A. Belik, M. Lilienblum, N. Leo, M. Fiebig et al., Observation of persistent centrosymmetricity in the hexagonal manganite family, Preparation and Structural Study from Neutron Diffraction Data of RCoO3 (R = Pr, pp.174422-174446, 2006.
DOI : 10.1103/PhysRevB.85.054417

G. Demazeau, M. Pouchard, and P. Hagenmuller, Sur de nouveaux compos??s oxyg??n??s du cobalt +III d??riv??s de la perovskite, Journal of Solid State Chemistry, vol.9, issue.3, pp.202-209, 1974.
DOI : 10.1016/0022-4596(74)90075-9

J. Yan, J. Zhou, and J. B. Goodenough, Bond-Length Fluctuations and the Spin-State Transition in LCoO3, Phys. Rev. B: Condens. Matter Mater. Phys, pp.69-134409, 2004.
DOI : 10.1103/physrevb.69.134409

J. Baier, S. Jodlauk, M. Kriener, A. Reichl, C. Zobel et al., Spin-State Transition and Metal-Insulator Transition in La1?xEuxCoO3 (30) Yamaguchi S.; Okimoto Y.; Tokura Y. Bandwidth Dependence of Insulator-Metal Transitions in Perovskite Cobalt Oxides, Phys. Rev. B: Condens. Matter Mater. Phys. Phys. Rev. B: Condens. Matter Mater. Phys, vol.54, pp.11022-11025, 1996.
DOI : 10.1103/physrevb.71.014443

K. Kní?ek, J. Hejtmánek, Z. Jirák, P. Tome?, P. Henry et al., Neutron Diffraction and Heat Capacity Studies of PrCoO3 and NdCoO3 Structure and Physical Properties of YCoO3 at Temperatures up to 1000 K, The New Powder and Single Crystal Magnetic Diffractometer on the Second Target Station. Neutron News 2011, 22, 22?25. (36) Rietveld, H. M. Profile Refinement Method for Nuclear and Magnetic Structures. (37) Rodríguez-Carvajal, J. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction, pp.34103-34137, 1969.

T. Ida, K. Momma, and F. Izumi, Efficiency in the Calculation of Absorption Corrections for Cylinders VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data, 1272?1276. (40) Blo?chl, P. E. Projector Augmented-Wave Method, pp.1124-1125, 1994.

G. Kresse and J. Hafner, molecular dynamics for open-shell transition metals, Physical Review B, vol.69, issue.17, pp.13115-13188, 1993.
DOI : 10.1103/PhysRevLett.69.1982

G. Kresse and J. Furthmu?ller, total-energy calculations using a plane-wave basis set, Physical Review B, vol.2, issue.16, pp.11169-11186, 1996.
DOI : 10.1016/0927-0256(94)90105-8

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B, vol.9, issue.3, pp.1758-1775, 1999.
DOI : 10.1103/PhysRevB.55.13479

J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber et al., Screened hybrid density functionals applied to solids, The Journal of Chemical Physics, vol.17, issue.15, p.154709, 2006.
DOI : 10.1007/3-540-09202-1

URL : https://hal.archives-ouvertes.fr/hal-00204683

J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber et al., Screened Hybrid Density Functionals Applied to Solids Hybrid Functionals Based on a Screened Coulomb Potential, J. Chem. Phys. J. Chem. Phys, vol.125, issue.118, pp.8207-8215, 2003.

J. Heyd, G. E. Scuseria, M. Ernzerhof, A. V. Krukau, O. A. Vydrov et al., Erratum: Hybrid Functionals Based on a Screened Coulomb Potential Influence of the Exchange Screening Parameter on the Performance of Screened Hybrid Functionals The Multiferroic Phase of DyFeO3: an Ab Initio Study, J. Chem. Phys. J. Chem. Phys. J. Chem. Phys. New J. Phys, vol.118, issue.12, pp.219906-219954, 2003.

J. Hong, A. Stroppa, J. Iniguez, S. Picozzi, D. Vanderbilt et al., Spin-Phonon Coupling Effects in Transition-Metal Perovskites: A DFT + U and Hybrid-Functional Study Antiferromagnetic Superexchange via 3d States of Titanium in EuTiO3 as Seen from Hybrid Hartree-Fock Density Functional Calculations, Phys. Rev. B: Condens. Matter Mater. Phys. Phys. Rev. B: Condens. Matter Mater. Phys, vol.2012, issue.83, pp.54417-214421, 2011.

H. Akamatsu, Y. Kumagai, F. Oba, K. Fujita, K. Tanaka et al., Strong Spin-Lattice Coupling Through Oxygen Octahedral Rotation in Divalent Europium Perovskites, I. First-Principles Calculations of the Phase Diagrams and Band Gaps in CuInSe2-CuGaSe2 and CuInSe2-CuAlSe2 Pseudobinary Systems, Adv. Funct. Mater. Phys. Rev. B: Condens. Matter Mater. Phys, vol.23, issue.85, pp.1864-1872, 2012.
DOI : 10.1002/adfm.201202477

W. Yi, Y. Kumagai, N. A. Spaldin, Y. Matsushita, A. Sato et al., : A New Manganite with New Properties, Inorganic Chemistry, vol.53, issue.18, pp.9800-9808, 2014.
DOI : 10.1021/ic501380m

H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Physical Review B, vol.10, issue.12, pp.5188-5192, 1976.
DOI : 10.1016/0021-9991(72)90046-0

A. M. Glazer, The classification of tilted octahedra in perovskites, Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, vol.28, issue.11, pp.3384-3392, 1972.
DOI : 10.1107/S0567740872007976

I. D. Brown and D. Altermatt, Bond-Valence Parameters Obtained from a Systematic Analysis of the Inorganic Crystal Structure Database In this work, BVS was calculated using the following parameters: b0 = 0.37 for all atoms, r0 = 1.902 for In, and r0 = 1.70 for Co. (58) Alonso, Evolution of the Jahn?Teller Distortion of MnO6 Octahedra in RMnO3 Perovskites (R = Pr): A Neutron Diffraction Study, pp.244-247, 1985.

W. Sinclair, R. A. Eggleton, A. E. Ringwood, and R. D. Shannon, Crystal Synthesis and Structure Refinement of High-Pressure ScAlO3 Perovskite Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides, Z. Kristallogr. Acta Crystallogr., Sect. A: Cryst. Phys. Gen. Crystallogr, vol.149, issue.32, pp.307-60, 1976.

X. Liu and C. Prewitt, High-temperature diffraction study of LnCoO3 perovskites: A high-order electronic phase transition, Journal of Physics and Chemistry of Solids, vol.52, issue.2, pp.441-448, 1991.
DOI : 10.1016/0022-3697(91)90097-J

R. H. Mitchell, Perovskites: Modern and Ancient, 2002.

C. P. Khattak and D. E. Cox, Structural studies of the (La, Sr) CrO3 system, )CrO3 System, pp.463-471, 1977.
DOI : 10.1016/0025-5408(77)90111-8

P. M. Woodward, T. Vogt, D. E. Cox, A. Arulraj, C. N. Rao et al., Perovskites at Room Temperature, Chemistry of Materials, vol.10, issue.11, pp.3652-3665, 1998.
DOI : 10.1021/cm980397u

B. J. Kennedy, C. J. Howard, and B. C. Chakoumakos, Phase transitions in perovskite at elevated temperatures - a powder neutron diffraction study, Journal of Physics: Condensed Matter, vol.11, issue.6, pp.1479-1488, 1999.
DOI : 10.1088/0953-8984/11/6/012

W. Yi, Y. Matsushita, Y. Katsuya, K. Yamaura, Y. Tsujimoto et al., perovskite, Dalton Transactions, vol.35, issue.324, pp.44-10785, 2015.
DOI : 10.1007/BF01022459

S. J. Kim, G. Demazeau, I. Presniakov, and J. H. Choy, Structural Distortion and Chemical Bonding in TlFeO3: Comparison with AFeO3 (A=Rare Earth), Journal of Solid State Chemistry, vol.161, issue.2, p.161, 2001.
DOI : 10.1006/jssc.2001.9292

P. M. Woodward, Octahedral Tilting in Perovskites. II. Structure Stabilizing Forces, Acta Crystallographica Section B Structural Science, vol.53, issue.1, pp.44-66, 1997.
DOI : 10.1107/S0108768196012050

Y. G. Zhang and Y. Wang, Density-Functional Study of the Electronic Structure and Optical Properties of Transparent Conducting Oxides In4Sn3O12 and In4Ge3O12, Journal of Electronic Materials, vol.73, issue.144, pp.1501-1505, 2011.
DOI : 10.1103/PhysRevB.73.045112

O. N. Mryasov and A. J. Freeman, Electronic band structure of indium tin oxide and criteria for transparent conducting behavior, Physical Review B, vol.79, issue.23, p.233111, 2001.
DOI : 10.1103/PhysRevB.64.233111