Sandwich-structured TiO 2 inverse opal circulates slow photons for tremendous improvement in solar energy conversion efficiency

Abstract : Photon management has enabled a true revolution in the development of high‐performance semiconductor materials and devices. Harnessing the highest amount of energy from photon relies on an ability to design and fashion structures to trap the light for the longer time inside the device for more electron excitation. The light harvesting efficiency in many thin‐film optoelectronic devices is limited due to low photon absorbance. Here we demonstrate for the first time that slow photon circulation in sandwich‐structured photonic crystals with two stopbands fine tuned are ideally suited to enhance and spectrally engineer light absorption. The sandwich‐structured TiO 2 inverse opal possesses two stopbands, whose blue or red edge is respectively tuned to overlap with TiO 2 electronic excitation energy, thereby circulating the slow photons in the middle layer and enhancing light scattering at layer interfaces. This concept, together with the significantly increased control over photon management opens up tremendous opportunities for the realization of a wide range of high‐ performance, optoelectronic devices, and photochemical reactions.
Type de document :
Article dans une revue
Journal of Materials Chemistry. A, Royal Society of Chemistry, 2017, 5 (25), pp.12803-12810. 〈10.1039/C7TA01703K〉
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal-univ-rennes1.archives-ouvertes.fr/hal-01624558
Contributeur : Laurent Jonchère <>
Soumis le : jeudi 26 octobre 2017 - 14:14:08
Dernière modification le : vendredi 25 mai 2018 - 01:26:20
Document(s) archivé(s) le : samedi 27 janvier 2018 - 14:21:33

Fichier

Eftekhari - Sandwich-structure...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Ehsan Eftekhari, Pierre Broisson, Nikhil Aravindakshan, Zhiqing Wu, Ivan Cole, et al.. Sandwich-structured TiO 2 inverse opal circulates slow photons for tremendous improvement in solar energy conversion efficiency. Journal of Materials Chemistry. A, Royal Society of Chemistry, 2017, 5 (25), pp.12803-12810. 〈10.1039/C7TA01703K〉. 〈hal-01624558〉

Partager

Métriques

Consultations de la notice

79

Téléchargements de fichiers

45