M. S. Dresselhaus and I. L. Thomas, Alternative energy technologies, Nature, vol.61, issue.6861, pp.332-337, 2001.
DOI : 10.1016/S0022-3697(00)00003-2

J. Chow, R. J. Kopp, and P. R. Portney, Energy Resources and Global Development, Science, vol.302, issue.5650, pp.1528-1531, 2003.
DOI : 10.1126/science.1091939

A. Midilli, M. Ay, I. Dincer, and M. A. Rosen, On hydrogen and hydrogen energy strategies, Renewable and Sustainable Energy Reviews, vol.9, issue.3, pp.255-271, 2005.
DOI : 10.1016/j.rser.2004.05.003

E. Chornet and S. Czernik, Harnessing hydrogen, Nature, vol.65, issue.6901, pp.928-929, 2002.
DOI : 10.1016/S0167-7799(00)01511-0

J. A. Turner, Sustainable Hydrogen Production, Science, vol.305, issue.5686, pp.972-974, 2004.
DOI : 10.1126/science.1103197

J. Greeley, T. F. Jaramillo, J. Bonde, I. B. Chorkendorff, and J. K. Norskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, Nature Materials, vol.14, issue.11, pp.909-913, 2006.
DOI : 10.1016/S0022-0728(72)80485-6

Y. Yan, X. Ge, Z. Liu, J. Y. Wang, J. M. Lee et al., Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction, Nanoscale, vol.317, issue.135, pp.7768-7771, 2013.
DOI : 10.1126/science.1141483

J. Duan, S. Chen, B. A. Chambers, G. G. Andersson, and S. Z. Qiao, Nanolayers@Heteroatom-Doped Graphene Films as Hydrogen Evolution Catalyst Electrodes, Advanced Materials, vol.342, issue.28, pp.4234-4241, 2015.
DOI : 10.1126/science.1244358

Z. Gholamvand, D. Mcateer, C. Backes, N. Mcevoy, A. Harvey et al., to be the most effective hydrogen evolution catalyst, Nanoscale, vol.51, issue.10, pp.5737-5749, 2016.
DOI : 10.1039/C5CC00803D

J. M. Velazquez, F. H. Saadi, A. P. Pieterick, J. M. Spurgeon, M. P. Soriaga et al., Synthesis and hydrogen-evolution activity of tungsten selenide thin films deposited on tungsten foils, Journal of Electroanalytical Chemistry, vol.716, pp.45-48, 2014.
DOI : 10.1016/j.jelechem.2013.11.030

M. Pi, T. Wu, D. Zhang, S. Chen, and S. Wang, nanowire arrays on carbon cloth as a flexible cathode for efficient hydrogen evolution, Nanoscale, vol.44, issue.47, pp.19779-19786, 2016.
DOI : 10.1103/PhysRevB.44.943

W. F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic et al., Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel-Molybdenum Nitride Nanosheets, Angewandte Chemie International Edition, vol.113, issue.25, pp.6131-6135, 2012.
DOI : 10.1021/jp804758y

W. F. Chen, C. H. Wang, K. Sasaki, N. Marinkovic, W. Xu et al., Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production, Energy & Environmental Science, vol.12, issue.3, pp.943-951
DOI : 10.1107/S0909049505012719

T. T. Yang and W. A. Saidi, Tuning the hydrogen evolution activity of beta-Mo 2 C nanoparticles via control of their growth conditions, Nanoscale, vol.2017, issue.9, pp.3252-3260

H. Vrubel and X. Hu, Molybdenum Boride and Carbide Catalyze Hydrogen Evolution in both Acidic and Basic Solutions, Angewandte Chemie International Edition, vol.5, issue.51, pp.12703-12706, 2012.
DOI : 10.1038/nmat1752

URL : https://infoscience.epfl.ch/record/182740/files/201207111_online-SI.pdf

T. F. Jaramillo, K. P. Jorgensen, J. Bonde, J. H. Nielsen, S. Horch et al., Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts, Science, vol.9, issue.25, pp.100-102, 2007.
DOI : 10.1039/b700099e

Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han et al., Hydrogen evolution by a metal-free electrocatalyst, Nature Communications, vol.4, pp.2014-3783
DOI : 10.1038/nnano.2007.451

URL : http://www.nature.com/articles/ncomms4783.pdf

T. Wang, L. Liu, Z. Zhu, P. Papakonstantinou, J. Hu et al., Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfidenanoparticles on an Au electrode, Energy Environ. Sci., vol.104, issue.2, pp.625-633
DOI : 10.1021/jp9935337

X. Zhao, X. Ma, J. Sun, D. Li, and X. Yang, Nanodots for Hydrogen Evolution, ACS Nano, vol.10, issue.2, pp.2159-2166, 2016.
DOI : 10.1021/acsnano.5b06653

J. Benson, M. Li, S. Wang, P. Wang, and P. Papakonstantinou, Electrocatalytic Hydrogen Evolution Reaction on Edges of a Few Layer Molybdenum Disulfide Nanodots, ACS Applied Materials & Interfaces, vol.7, issue.25, pp.14113-14122, 2015.
DOI : 10.1021/acsami.5b03399

J. Benson, Q. Xu, P. Wang, Y. Shen, L. Sun et al., Tuning the Catalytic Activity of Graphene Nanosheets for Oxygen Reduction Reaction via Size and Thickness Reduction, ACS Applied Materials & Interfaces, vol.6, issue.22, pp.19726-19736, 2014.
DOI : 10.1021/am5048202

B. Seo, H. Y. Jeong, S. Y. Hong, A. Zak, and S. H. Joo, Impact of a conductive oxide core in tungsten sulfide-based nanostructures on the hydrogen evolution reaction, Chemical Communications, vol.188, issue.39, pp.2015-8334
DOI : 10.1006/jcat.1999.2600

L. Yang, X. Zhu, S. Xiong, X. Wu, Y. Shan et al., Hybrid Catalysts for High-Efficiency Hydrogen Evolution, Synergistic WO 3 ·2H 2 O Nanoplates/WS 2 Hybrid Catalysts for High-Efficiency Hydrogen Evolution, pp.13966-13972, 2016.
DOI : 10.1021/acsami.6b04045

G. Dong, M. Fang, H. Wang, S. Yip, H. Cheung et al., Insight into the electrochemical activation of carbon-based cathodes for hydrogen evolution reaction, Journal of Materials Chemistry A, vol.2, issue.24, pp.13080-13086, 2015.
DOI : 10.1002/cctc.201000126

M. Li, Size-Dependent Enhancement of Electrocatalytic Oxygen-Reduction and Hydrogen-Evolution Performance of MoS 2 Particles, Chem. Eur. J. 2013, vol.19, pp.11939-11948

J. Zhou, J. Qin, L. Guo, N. Zhao, C. Shi et al., Scalable synthesis of high-quality transition metal dichalcogenide nanosheets and their application as sodium-ion battery anodes, J. Mater. Chem. A, vol.7, issue.44, pp.17370-17380, 2016.
DOI : 10.1039/C3EE42591F

Z. Yang and J. Hao, Progress in pulsed laser deposited two-dimensional layered materials for device applications, J. Mater. Chem. C, vol.2, issue.38, pp.8859-8878, 2016.
DOI : 10.1038/nnano.2014.26

URL : http://pubs.rsc.org/en/content/articlepdf/2016/tc/c6tc01602b

R. K. Jha and P. K. Guha, nanosheets for ultrasensitive and highly stable chemiresistive humidity sensors, Nanotechnology, vol.27, issue.47, p.475503, 2016.
DOI : 10.1088/0957-4484/27/47/475503

J. A. Wilson and A. D. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties, Advances in Physics, vol.12, issue.73, pp.193-335, 1969.
DOI : 10.1063/1.1703870

B. Mahler, V. Hoepfner, K. Liao, and G. A. Ozin, Nanosheets: Applications for Photocatalytic Hydrogen Evolution, Journal of the American Chemical Society, vol.136, issue.40, pp.14121-14127, 2014.
DOI : 10.1021/ja506261t

L. F. Mattheiss, Band Structures of Transition-Metal-Dichalcogenide Layer Compounds, Physical Review B, vol.11, issue.8, pp.3719-3740, 1973.
DOI : 10.1016/0038-1098(72)90274-8

V. Chikan and D. F. Kelley, Nanoclusters, The Journal of Physical Chemistry B, vol.106, issue.15, pp.3794-3804, 2002.
DOI : 10.1021/jp011898x

Y. Sang, Z. Zhao, M. Zhao, P. Hao, Y. Leng et al., Nanosheet: A Novel Photocatalyst for Full Solar Light Spectrum Photodegradation, Advanced Materials, vol.21, issue.2, pp.363-369, 2015.
DOI : 10.1039/c0jm03542d

J. Zhuo, T. Wang, G. Zhang, L. Liu, L. Gan et al., Electrodeposited onto a Glassy Carbon Electrode: Surprising Catalytic Performance in the Hydrogen Evolution Reaction, Angewandte Chemie International Edition, vol.128, issue.41, pp.10867-10870, 2013.
DOI : 10.1021/ja0651106

H. Wang, B. Chen, X. Zhang, S. Liu, B. Zhu et al., Ethanol catalytic deposition of MoS 2 on tapered fiber, Photon. Res, vol.2015, issue.3, pp.102-107

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao et al., Emerging Trends in Phosphorene Fabrication towards Next Generation Devices, Advanced Science, vol.6, issue.6, p.1600305, 2017.
DOI : 10.1038/ncomms9563

URL : https://doi.org/10.1002/advs.201600305

X. J. Chua and M. Pumera, treatment on its catalytic efficiencies for HER and ORR, Phys. Chem. Chem. Phys., vol.19, issue.36, pp.6610-6619
DOI : 10.1002/chem.201301406

J. Gao, B. Li, J. Tan, P. Chow, T. M. Lu et al., Aging of Transition Metal Dichalcogenide Monolayers, ACS Nano, vol.10, issue.2, pp.2628-2635, 2016.
DOI : 10.1021/acsnano.5b07677

H. Dong, D. Chen, K. Wang, and R. Zhang, High-Yield Preparation and Electrochemical Properties of Few-Layer MoS 2 Nanosheets by Exfoliating Natural Molybdenite Powders Directly via a Coupled Ultrasonication-Milling Process, Nanoscale Res. Lett, issue.11, p.409, 2016.

C. Desfrançois, V. Périquet, S. Carles, J. P. Schermann, D. M. Smith et al., -dimethylformamide, The Journal of Chemical Physics, vol.110, issue.9, pp.4309-4314, 1999.
DOI : 10.1021/jp971630z

W. Cui, Q. Liu, N. Cheng, A. M. Asiri, and X. Sun, Activated carbon nanotubes: a highly-active metal-free electrocatalyst for hydrogen evolution reaction, Chem. Commun., vol.5, issue.66, pp.2014-9340
DOI : 10.1002/cctc.201200471

T. Wang, K. Du, W. Liu, Z. Zhu, Y. Shao et al., Enhanced electrocatalytic activity of MoP microparticles for hydrogen evolution by grinding and electrochemical activation, Journal of Materials Chemistry A, vol.47, issue.8, pp.4368-4373, 2015.
DOI : 10.1002/anie.200801559

J. Y. Zheng, G. Song, J. Hong, T. K. Van, and A. Pawar, Facile Fabrication of WO 3 Nanoplates Thin Films with Dominant Crystal Facet of (002) for Water Splitting, pp.6057-6066

J. Bonde, P. G. Moses, T. F. Jaramillo, J. K. Norskov, and I. Chorkendorff, Hydrogen evolution on nano-particulate transition metal sulfides, Faraday Discuss., vol.14, pp.219-231, 2008.
DOI : 10.1016/0263-7855(96)00018-5

URL : http://orbit.dtu.dk/en/publications/hydrogen-evolution-on-nanoparticulate-transition-metal-sulfides(73e0d1fc-82a1-45cd-9e2d-dbcd078d0aac).html

N. Huo, Q. Yue, J. Yang, S. Yang, and J. Li, Nanoparticles, ChemPhysChem, vol.54, issue.229, pp.4069-4073, 2013.
DOI : 10.1103/PhysRevB.54.11169

Y. H. Li, P. F. Liu, L. F. Pan, H. F. Wang, Z. Z. Yang et al., Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water, Nature Communications, vol.54, pp.2015-8064
DOI : 10.1002/anie.201409524

URL : http://www.nature.com/articles/ncomms9064.pdf

J. Wang, K. Li, H. X. Zhong, D. Xu, Z. L. Wang et al., Synergistic Effect between Metal-Nitrogen-Carbon Sheets and NiO Nanoparticles for Enhanced Electrochemical Water-Oxidation Performance, Angewandte Chemie International Edition, vol.7, issue.36, pp.10530-10534, 2015.
DOI : 10.1021/nn3059983

J. Z. Ou, S. Balendhran, M. R. Field, D. G. Mcculloch, A. S. Zoolfakar et al., The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties, Nanoscale, vol.140, issue.167, pp.5980-5988, 2012.
DOI : 10.1149/1.2221054

S. Zhuiykov, E. Kats, B. Carey, and S. Balendhran, nano-flakes with enhanced charge-carrier mobility at room temperature, Nanoscale, vol.58, issue.158, pp.15029-15036, 2014.
DOI : 10.1109/TED.2011.2159221

J. Chen, D. Yu, W. Liao, M. Zheng, L. Xiao et al., Nanoplates Grown on Carbon Nanofibers for an Efficient Electrocatalytic Hydrogen Evolution Reaction, ACS Applied Materials & Interfaces, vol.8, issue.28, pp.18132-18139, 2016.
DOI : 10.1021/acsami.6b05245

C. C. Mccrory, S. Jung, J. C. Peters, and T. F. Jaramillo, Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction, Journal of the American Chemical Society, vol.135, issue.45, pp.16977-16987, 2013.
DOI : 10.1021/ja407115p

S. H. Lee, R. Deshpande, P. A. Parilla, K. M. Jones, B. To et al., Crystalline WO3 Nanoparticles for Highly Improved Electrochromic Applications, Crystalline WO3 Nanoparticles for Highly Improved Electrochromic Applications, pp.763-766, 2006.
DOI : 10.1002/adma.200501953