PARP2 deficiency affects invariant-NKT,-cell maturation and protects mice from Concanavalin A-induced liver injury.

Aveline Filliol, Claire Piquet-Pellorce, Sarah Dion, Valentine Genet, Catherine Lucas-Clerc, Françoise Dantzer, Michel Samson

To cite this version:
Aveline Filliol, Claire Piquet-Pellorce, Sarah Dion, Valentine Genet, Catherine Lucas-Clerc, et al.. PARP2 deficiency affects invariant-NKT,-cell maturation and protects mice from Concanavalin A-induced liver injury. AJP - Gastrointestinal and Liver Physiology, American Physiological Society, 2017, 313 (5), pp.G399-G409. <10.1152/ajpgi.00436.2016>. <hal-01630440>
PARP2 deficiency affects invariant-NKT-cell maturation and protects mice from Concanavalin A-induced liver injury.

Aveline Filliol1,2,3, Claire Piquet-Pellorce1,2,3, Sarah Dion1,2,3, Valentine Genet1,2,3, Catherine Lucas-Clerc2,4, Françoise Dantzer5, and Michel Samson1,2,3.

1Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche Santé Environnement et Travail (IRSET), F-35043 Rennes, France.
2Université de Rennes 1, F-35043 Rennes, France.
3Structure Fédérative BioSit UMS 3480 CNRS-US18 Inserm, F-35043 Rennes, France.
4Service de Biochimie CHU Rennes, Université de Rennes 1; F-35043 Rennes, France.
5Université de Strasbourg, Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS, Laboratoire d'Excellence Medalis, ESBS, 300, Boulevard Sébastien-Brant, CS 10413, 67412 Illkirch, France.

Correspondence: Michel Samson, INSERM-U1085, IRSET, Université de Rennes 1, 2, Avenue du Professeur Léon Bernard, 35043 RENNES Cedex, France. Phone (+33) 22 323 5927; Fax (+33) 22 323 4794.

Number of figures: 6

Number of tables: 1

Financial support: This work was supported by INSERM, the Ministère de
l’Education Nationale, de l’Enseignement Supérieur et de la Recherche, the Université de Rennes 1, the Région Bretagne, the “Ligue Contre le Cancer, Comités du Grand Ouest”.

Conflict of interest: The authors declare no financial or commercial conflict of interest.

Keywords: Hepatitis, Parp, Liver, NKT cells, Autoimmune hepatitis

List of abbreviations:

Conflict of interest.

Aveline Filliol declares no financial or commercial conflict of interest.
Claire Piquet-Pellorce declares no financial or commercial conflict of interest.
Sarah Dion declares no financial or commercial conflict of interest.
Valentine Genet declares no financial or commercial conflict of interest.
Catherine Lucas-Clerc declares no financial or commercial conflict of interest.
Françoise Dantzer declares no financial or commercial conflict of interest.
Michel Samson declares no financial or commercial conflict of interest.

Authors’ contributions
Aveline Filliol: acquisition of data; analysis and interpretation of data, statistical analysis, drafting of the manuscript

Claire Piquet-Pellorce: acquisition of data, analysis and interpretation of data

Sarah Dion: acquisition of data, analysis and interpretation of data

Valentine Genet: acquisition of data and analysis

Catherine Lucas-Clerc: obtained technical or material support

Françoise Dantzer: drafting of the manuscript, critical revision of the manuscript for important intellectual content

Michel Samson: acquisition of data, analysis and interpretation of data, statistical analysis, drafting of the manuscript, study concept and design, study supervision
Abstract (202 words)

Excessive or persistent inflammation and hepatocyte death are the key triggers of liver diseases. The poly(ADP-ribose) polymerase (PARP) proteins induce cell death and inflammation. Chemical inhibition of PARP activity protects against liver injury during Concanavalin A (ConA)-induced hepatitis. In this mice model, ConA activates immune cells which promote inflammation and induce hepatocyte death, mediated by the activated invariant NKT-(iNKT) lymphocyte population. We analyzed immune cell populations in the liver and several lymphoid organs such as spleen, thymus, and bone marrow in Parp2 deficient mice to better define the role of PARP proteins in liver immunity and inflammation at steady state and during ConA-induced hepatitis.

We show that i) the genetic inactivation of Parp2, but not Parp1, protected mice from ConA hepatitis without deregulating cytokine expression and leucocyte recruitment; ii) cellularity was lower in the thymus, but not in spleen, liver, or bone marrow of Parp2−/− mice; iii) spleen and liver iNKT lymphocytes, as well as thymic T and NKT lymphocytes were reduced in Parp2 knockout mice. In conclusion, our results suggest that the defect of T-lymphocyte maturation in Parp2 knockout mice leads to a systemic reduction of iNKT cells, reducing hepatocyte death during ConA-mediated liver damage, thus protecting the mice from hepatitis.
INTRODUCTION

Hepatitis can be caused by various insults such as alcohol, a high fat diet, food-derived toxins, or infections, and is characterized by hepatocyte death and inflammation (5). Acute hepatitis is associated with massive hepatolysis which can lead to liver failure, whereas in chronic hepatitis, unresolved hepatolysis triggers the release of Damage Associated Molecular Patterns (DAMPs) which promote inflammation. This process induces an inflammation and cell death amplification loop that contributes to the progression of liver diseases (5, 18). Blocking the pro-inflammatory hepatocyte death response could be beneficial to in treating liver diseases.

During viral or auto-immune hepatitis, innate and adaptive lymphocytes kill hepatocytes which present proteins recognized as non-self-antigens, by the activation of death receptors (DR). In mice, Concanavalin A (ConA)-induced liver injury mimics immune cell-mediated hepatitis in humans (27) and is dependent on innate Natural Killer T (NKT) lymphocytes. NKT cells are involved in numerous immune responses and are particularly abundant in the liver and spleen of mice. They have the ability to recognize lipids presented by CD1d which allows there distinction into two categories of NKT cells. Type I or invariant-NKT (iNKT) cells express an invariant T-cell receptor α-chain (TCRα; Vα14-Jα18) and are able to recognize the α-Galactosylceramide (α-GalCer) presented by CD1d. Type II NKT cells express more diverse TCR Vα chains that cannot recognize α-GalCer and are characterized as CD4/CD8 double negative (DN). The iNKT are the major NKT subset in the liver and CD1d⁻⁻ (NKT deficient) mice as well as Vα14⁻⁻ (iNKT deficient) mice are protected from ConA-induced hepatitis (15, 26-28). ConA activates liver immune cells which promote hepatocyte death in two ways. First, activated immune
cells release large amounts of cytokines, such as TNF-α (17, 21), IFN-γ (12, 25) and IL-4 (13) which play key roles in the hepatocyte death process (17, 27, 29). Second, activated NKT cells, potent producers of IFN-γ, kill hepatocytes by activation of the TNF-superfamily DR (3, 23, 26, 33) and the perforin/granzyme B system (31). Our group has extensively investigated the mechanisms of hepatocyte death during hepatitis. We and others have demonstrated a key role for PARP proteins in the liver. We have shown that inhibition of poly(ADP) ribose polymerase (PARP) 1 and 2 activity with the PJ-34-inhibitor protects mice from ConA-mediated hepatolysis (2, 14). Mukhopadhyay et al. have shown that genetic or chemical inhibition of PARP1 also prevents liver inflammation and fibrosis induced by the hepatotoxic carbon tetrachloride (CCl4) or bile duct ligation (22). PARP1 and PARP2 are activated by DNA strand breaks and use NAD+ as a substrate to synthetize chains of poly(ADPribose) onto various acceptor proteins, thereby inducing chromatin remodeling and the recruitment of DNA repair complexes (8). In the last decades, PARP1 and PARP2 have also been found to play an important role in inflammation (4) and cell death (30). In this study, we aimed to better define the roles of PARP1 and PARP2 proteins in ConA-induced hepatitis using the Parp1 and Parp2 knockout mouse models.

METHODS

Animals and treatment protocols

C57BL/6 Parp1 and Parp2 genetically modified mice (Parp1+/− and Parp2+/−, respectively) were provided by Dr. F. Dantzer and generated as described previously (7, 32). Heterozygous mice were crossed to obtain knockout and littermate WT mice. Adult male and female mice, of 10 to 12 weeks of age, were used for each
experiment with the ConA model. ConA (C2010 Sigma-Aldrich, St. Louis, MO) was prepared at 3 mg/mL in PBS supplemented with 0.31 mM MnCl$_2$ and 0.75 mM CaCl$_2$ and administered by intravenous (i.v.) injection at a dose of 10 or 12 mg/kg body weight. For histopathological and biochemical studies, mice treated with ConA were compared to mice which received PBS supplemented with 0.31 mM MnCl$_2$ and 0.75 mM CaCl$_2$. For all phenotypic immune cell analyses, adult (10 to 12 weeks old) or early adult (five-week-old) mice were either not treated, to analyze the population at steady state, or treated with ConA. Animals were housed in individual cages and bred in specific pathogen-free conditions in the local animal house facilities. All treatment protocols were in accordance with the French laws and the institution’s guidelines for animal welfare (agreement of M. Samson # R-2012-CPP-01).

Histopathological and biochemical studies

Mouse liver biopsies were fixed in 4% paraformaldehyde and embedded in paraffin for IHC and hematoxylin and eosin (H&E) staining. For histopathology, H&E staining of liver tissues was carried out to investigate liver injury. Serum ALT and AST transaminases were measured according to the IFCC primary reference procedures using an Olympus AU2700 Autoanalyser$^\text{®}$ (Olympus Optical, Tokyo, Japan).

RNA analysis

Total RNA was extracted from mouse livers using TRIzol reagent (Invitrogen). First-strand cDNA was synthesized using the SuperScript$^\text{TM}$ II Reverse Transcriptase (Invitrogen). Real-time quantitative PCR was performed using the fluorescent dye
SYBR Green with the double-strand specific SYBR® Green system (Applied Biosystems) and the ABI 7000 Prism sequence detector (Applied Biosystems) or the CFX384 Touch™ Real-Time PCR Detection System (Bio-Rad). cDNA was used as template for amplification using specific primer pairs (Table 1). Each measurement was performed in triplicate. The relative gene expression was normalized against 18S rRNA gene expression. The control mice in each treatment group served as a reference for messenger RNA (mRNA) expression (the control mRNA level was arbitrarily set to 1).

Immune cell analysis by flow cytometry

Immune cells were prepared from spleen, thymus, or liver crushed on a 70 µm filter. Liver immune cells were isolated after sedimentation and cell fractionation on a 35% Percoll layer. For each organ, red blood cells were lysed using ammonium-chloride-potassium (ACK) buffer. Bone marrow immune cells were isolated by flushing two femurs with RPMI medium (Gibco). The number of immune cells was determined by counting in a Malassez counting chamber.

Cell suspensions were labeled for 30 min with LIVE/DEAD fixable yellow stain (Life technologies, L34959) to exclude dead cells from the analysis. Cells were also pre-incubated with an anti-CD16/32 antibody (BD Pharmingen) to block non-specific binding before incubation with the appropriate fluorochrome-conjugated antibodies (BD Pharmingen, eBioscience): anti-CD3-FITC (clone 17A2), anti- TCRβ-V450 (clone H57-597), anti-CD69-PE (clone H1.2F3), anti-CD19-APC or anti-CD19-PE (clone 1D3), anti-NK1.1-PerCP-Cy-5.5 (clone PK136), anti-CD4-PE-Cy7 (clone RM4-5), anti-CD8-APC-Cy7 (clone 53-6.7), anti-GR1-eFluor450 (clone FB6-8C5), anti-
CD11b-PE-Cy7 (clone M1/70), anti-Sca1-PE (clone D7), anti-c-kit-PerCP-eFluor710 (clone 2B8), anti-Ter119-eFluor780 (clone Ter119), and empty CD1d tetramer or CD1d tetramer loaded with α-galactosylceramide (GalCer)-PE (provided by Dr. M. Leite de Morales). The stained cells were analyzed on a FACS™ II flow cytometer and data were analyzed using CXP software (Beckman Coulter). Doublets and dead cells were excluded on the basis of forward/side scatter and LIVE/DEAD labeling, respectively. The immuno-phenotyping used was as follows: B-lymphocytes: CD19+/CD3- cells; T-lymphocytes: CD3+/TCRβ+/NK1.1-; NKT cells: CD3+/TCRβ+/NK1.1+; NK cells: CD3-/NK1.1+; and granulocytes: GR1+CD11b+.

Lymphoid activation was studied by analyzing the expression of CD69. We calculated the percentage of each immune cell population, by considering the sum of events of all immune cell populations analyzed (sum of T, NK, NKT, B cells and myeloid cells) as 100% of the total immune cells. The absolute number in each immune cell population was calculated by multiplying the percentage of each population by the total number of immune cells.

Serum cytokine immunoassay by flow cytometry

Murine TNF-α, IFN-γ and IL-6 cytokines were quantified by bead-based immunoassays according to manufacturer protocol, using a filter plate and a vacuum filtration system for washing steps (BioLegend’s LEGENDPLEX, multi-analyte flow assay kit). Samples were analyzed on a LSR Fortessa cytometer (BD Biosciences).

Statistical analysis
Data are expressed as the means +/- SEM for all mice treated similarly. Kruskal–Wallis one-way analysis of variance (ANOVA) was performed, and mean differences between experimental groups were assessed using the non-parametric Mann–Whitney U-test using GraphPad Prism5 software.

RESULTS

PARP2 but not PARP1 deficiency protects mice from ConA-induced hepatitis

We investigated the role of PARP1 and PARP2 proteins in hepatitis using adult knockout mice for PARP1 (Parp1^{−/−}) and PARP2 (Parp2^{−/−}) and comparing the results to those obtained using wild-type mice (WT). We challenged mice with ConA to induce hepatitis, or with PBS as a control, and evaluated liver damage using serum transaminase (ALT and AST) levels and hematoxylin coloration. In ConA induced-hepatitis, the peak of hepatolysis occurs 11 h after ConA treatment. (29) Parp1^{−/−} mice displayed visibly, but non-significantly, lower ALT and AST transaminase levels than WT mice at this time point. In contrast, Parp2^{−/−} mice were highly protected from ConA-induced hepatitis as they had significantly lower (4-fold) levels of both AST and ALT than WT mice (Fig. 1A). Accordingly, H&E coloration of liver slides from Con A-treated WT and Parp2^{−/−} mice, revealed fewer areas of necrosis in Parp2 deficient mice than in WT mice (Fig. 1B). Moreover, the absence of PARP2 appeared to protect mice from hepatolysis and did not simply delay liver injury as serum transaminase levels remained significantly lower in Parp2^{−/−} mice than in WT mice, even 24 h after ConA administration (Fig. 1C). We next evaluated the level of inflammation induced by ConA, by measuring the mRNA levels of TNF-α, IFN-γ, IL-1β, and IL-4, all known to play key roles during ConA-induced hepatitis. TNF-α, IFN-
γ, IL-1β, and IL-4 transcript levels were higher in all genotypes after ConA treatment. However, we observed no significant differences between the IFN-γ or IL-4 mRNA levels in Parp1−/−, Parp2−/−, or WT mice, whereas TNF-α transcript levels were significantly lower in Parp2−/− mice than in the other two mouse strains. In contrast, IL-1β mRNA levels were higher in both Parp2−/− and Parp1−/− mice than in WT mice.

Next, we analyze serum cytokines from WT and Parp2−/− mice. TNF-α, IFN-γ and IL-6 were up-regulated in both genotypes after ConA challenge. However, TNF-α and IFN-γ levels were similar between WT and Parp2−/− mice, whereas IL-6 rate decreased in Parp2−/− mice (Fig. 1E).

Parp2−/− mice display a substantial reduction in the number of liver iNKT cells

We performed all further experiments using only the Parp2−/− mouse model, as PARP2 protein deficiency protected mice from ConA-induced liver damage, whereas that of PARP1 did not. ConA induces liver injury in an immune cell-dependent manner. Thus we next measured the steady-state, basal levels of the different liver immune cell subsets in Parp2−/− mice of two different ages: early adult (five weeks) and adult (10 to 12 weeks) by flow cytometry. Cell doublets and dead cells were excluded and the phenotypic analysis of liver immune cells was determined using the gating strategy presented in Figure 2A.

Parp2−/− mice displayed a similar number of liver immune cells as WT mice at the two different ages (Fig. 2B). The absolute number of total T lymphocytes and the ratio of CD4:CD8 T-lymphocytes were also similar in the livers of both genotypes (Fig. 2C).

We next analyzed the NKT-lymphocyte population, defined as CD3, TCRVβ, and NK1.1 positive cells. We used the CD1d tetramer loaded with αGalCer to analyze the invariant-NKT (iNKT) subset (CD3+ TCRVβ+ NK1.1+ αGalCer+) and the anti-CD4
antibody to study NKT DN cells (CD3+ TCRVβ+ NK1.1+ αGalCer- CD4-). Parp2−/− mice displayed a reduction in the percentage of total liver NKT cells of two fold in five-week-old mice and of 1.5 fold in 10-12-week-old mice (Fig. 2D). However, PARP2 deficiency did not impair the increase in the percentage of liver NKT cells as the mice aged (Fig 2D). We also observed that only the percentage of iNKT cells, but not NKT DN cells, was significantly lower in the Parp2−/− mice at both ages (Fig. 2E). The absolute number of liver immune cells was similar between both genotypes, whereas the number of iNKT cells was lower in Parp2−/− mice. We thus aimed to determine which immune cell subsets compensated this reduction. The percentage of NK-cells (NK1.1+ CD3-) and B-lymphocytes (CD19+ CD11b-) were higher in five-week-old Parp2−/− mice, but only the percentage of NK-cells was higher in adult Parp2−/− mice (Fig. 2F and 2G). The liver myeloid compartment, based on GR1 and CD11b labelling, also appeared to be similar in Parp2−/− and WT mice, regardless of age (Fig. 2H). In conclusion, PARP2 deficiency induced a significant reduction in the number of iNKT cells in the liver which was not compensated by an increase of all immune cell subsets, but by a gain of B and NK-lymphocytes.

PARP2 deficiency does not affect the recruitment and activation of immune cells during ConA-induced hepatitis.

We next examined the impact of PARP2 deficiency on ConA-induced cell recruitment and activation. ConA-induced inflammation and cell death induced a similarly high level of leucocyte recruitment to the liver in mice of both genotypes as seen by the large increase in the absolute number of liver immune cells 11 h after injection, which then decreased with the resolution of the hepatitis 24 h after ConA treatment (Fig. 3A). We evaluated the NKT-cell subset and found a reduction in the number of NKT
cells in the livers of mice of both genotypes upon ConA treatment. However, this reduction was 3.7 fold in WT mice, relative to untreated mice, but only 1.7 fold in Parp2\(^{-/-}\) mice, (Fig. 3B). The absence of PARP2 protein did not seem to affect the recruitment of other leucocyte populations, as T, B, and NK-lymphocytes, and myeloid cells were similarly recruited for both genotypes 11 h after ConA administration (Fig. 3C). Finally, we analyzed the early activation marker CD69 on lymphocytes and observed that more than 90% of T-lymphocytes in both Parp2\(^{-/-}\) and WT mice were activated after ConA treatment (Fig. 3D).

Parp2\(^{-/-}\) mice have fewer spleen iNKT cells than WT mice

We demonstrated that Parp2\(^{-/-}\) mice were protected from ConA-hepatitis and had fewer hepatic NKT cells, without affecting ConA-induced inflammation. We next analyzed the immune cell subsets in the various lymphoid compartments such as spleen, bone marrow, and thymus. Gating strategies used for splenocyte analysis are depicted in Supplementary Figures 1 and 2. PARP2 deficiency did not affect the absolute number of splenocytes in mature mice but they were slightly, but not significantly, higher in number in early adult mice (Fig. 4A). We then evaluated the percentage cells in each immune cell subset in the spleen. The number of T-lymphocytes (CD3+ NK1.1\(^{-}\) TCRV\(\beta\)\(+\)) were lower only in early adult Parp2\(^{-/-}\) mice (Fig. 4B) and was compensated by an increase in the number of B-lymphocytes (CD19+ CD11b\(-\)) (Fig. 4C). Similar to our observations in the liver, the spleens of five- and 10-12-week-old Parp2\(^{-/-}\) mice had significantly fewer NKT cells than those of WT mice, and only the iNKT cells were affected (Fig. 4D). In contrast to the liver, the number of spleen NK cells was only slightly, but not significantly, higher in Parp2\(^{-/-}\) than in WT mice (Fig. 4E).
Parp2−/− mice have fewer thymus iNKT cells than WT mice.

We next investigated the thymocyte population of five-week-old mice to understand the cause of the reduction in NKT-cell number in the liver and spleen of Parp2**−/−** mice. The absolute number of thymocytes was lower in Parp2**−/−** mice than in WT mice, and was associated with a reduction in the absolute number of immature CD4/CD8 double positive (DP) and CD4 or CD8 simple positive (SP) thymocytes (Fig. 5A and 5B). The absolute number of iNKT cells (αGalCer+) was also lower in Parp2**−/−** mice (Fig. 5C). However, the remaining iNKT cells expressed wild-type levels of mature T lymphocyte markers such as CD3 and TCRVβ (Fig. 5D).

Parp2−/− mice have more Ter119+-cells than WT mice.

Finally, we eliminated doublets and dead cells, analyzed BM immune cells by flow cytometry to analyze the different immune cell subsets, as depicted in Figure 3A, then we investigated the immune cell subsets in the bone marrow (BM) of Parp2**−/−** mice. As observed in the spleen and the liver, BM cellularity was similar between Parp2**−/−** and WT adult mice (Fig. 6B). The absolute numbers of the different mature BM cell subsets (CD19+, GR1high CD11b+, GR1high CD11b+ and CD3+) were similar with slight variations between the two genotypes, except for Ter119 positive cells which were significantly more numerous in Parp2**−/−** mice (Fig. 6C). Similarly, the number of Lin− cells (Ter119- CD19- CD3- GR1- CD11b-) was slightly, but not significantly higher in the Parp2**−/−** mice, and was associated with a small increase in the number of the myeloid progenitor (MP) (Lin- ckit+ Sca-) and LSK populations (Lin- ckit+ Sca+) (Fig. 6D).
DISCUSSION

We previously reported that inhibition of PARP protein activity with the PJ-34 inhibitor protected mice from ConA-induced hepatolysis (2, 14). PARP proteins mediate the activation of various transcription factors, such as NF-κB, to promote inflammation in several inflammatory diseases, including CCl4 induced chronic liver injury. Inactivation or inhibition of PARP proteins prevents inflammation-induced tissue damage (4). Inflammation induced by ConA plays a key role in the induction of hepatolysis (12, 13, 17, 21, 25). However, we previously demonstrated that PJ-34 does not inhibit inflammation during ConA-induced hepatitis, as cytokine release and liver leucocyte recruitment occurred efficiently, suggesting a more direct role for PARP proteins in the induction of hepatocyte death (2, 14). Here, we show that the genetic inactivation of Parp2, but not Parp1, protects mice from ConA-induced hepatitis without deregulating inflammation, as leucocyte recruitment and pro-inflammatory cytokine expression were not affected. Analysis of liver and spleen immune populations revealed a substantial reduction in the percentage of iNKT cells, normally enriched in both organs (19). The reduction in the number of iNKT in Parp2-/- mice may explain the reduced hepatolysis and protection from ConA-induced hepatitis observed in these mice. Indeed, rapid elimination of NKT cells after ConA treatment is a marker of NKT-induced liver injury following their activation (26). We also observed the elimination of NKT cells after ConA treatment in both Parp2-/- and WT mice, but as fewer NKT cells were present in the untreated Parp2-/- mice relative to WT mice, there were fewer NKT cells available to induce hepatocyte cell death after ConA treatment in these mice. Surprisingly, whereas IFN-γ is highly produced by NKT cells, we did not observed a reduction of both its expression and its serum level in Parp2-/- mice. However in the liver, the reduction of NKT-cell number was
compensated by an increase in the number of NK cells which are potent producers of IFN-γ. As a consequence, in Parp2−/− mouse liver, the increase of NK cells could compensate the NKT-cell reduction in the inflammatory process. However, the increase in NK-cell number was not sufficient to restore hepatocyte cell death, as ConA-induced liver injury is strictly NKT-dependent and NK-independent (26, 28). Our study using Parp1 and Parp2 knockout mice did not allow us to clarify the effect of the PJ-34 inhibitor. Moreover, the fact that Parp1−/− mice were not protected against ConA-induced hepatitis, suggests that PARP2 participates in ConA-mediated liver injury, as the two proteins share common functions (1, 8). Parp1 and Parp2 double knockout mice are lethal (20). It may be informative to use conditional knockout mice to further decipher the role of both proteins in the liver.

We analyzed the thymus and bone marrow of Parp2−/− mice to identify the cause of the systemic reduction of iNKT cells detected in these mice. As previously described, Parp2−/− mice displayed an increase of the erythroid subset (10), but no T-lymphocyte deregulation. iNKT cells mature in the thymus and are derived from the DP population (11). In agreement with others, we observed a reduction in the number of DP-thymocytes in the absence of PARP2 protein (32) and revealed a substantial reduction in the number of thymic iNKT cells. PARP2 deficiency leads to inefficient Vα to Jα rearrangement inducing the death of DP-thymocytes (32), resulting in a decrease in the number of mature SP T-lymphocytes and iNKT cells. However, only iNKT-cell numbers were lower in the liver and spleens of adult mice, but not those of conventional T-lymphocytes.

The rearrangement of TCR occurs at the DP-thymocyte stage and involves DNA-break and DNA-repair mechanisms. PARP2 is sensitized to DNA damage (8) and has been highlighted to play a role in the TCRα rearrangement process during
thymocyte development, as Parp2\(^{-/-}\) DP thymocytes display a skewed TCR\(\alpha\) repertoire and a decrease of cell survival (32). The rearrangement of the TCR\(\alpha\) locus occurs in a sequential manner from proximal to distal regions (16) and Parp2\(^{-/-}\) DP-thymocytes present a reduction of the distal segments J\(\alpha\)42 to J\(\alpha\)4 (32). Interestingly, iNKT cell lineage differentiates at the DP stage and is characterized by expression of an unique TCR\(\alpha\) chain with a V\(\alpha\)14-J\(\alpha\)18 rearrangement. As the J\(\alpha\)18 segment is located between the segments J\(\alpha\)42 and J\(\alpha\)4, this strongly suggests that use of J\(\alpha\)18 is reduced in DP-thymocyte Parp2\(^{-/-}\), and could explain the reduction of iNKT-lymphocyte subset. This is supported by the fact that a default of TCR\(\alpha\) rearrangement is known to induce DP-thymocyte cell death (16) and that Parp2\(^{-/-}\) thymocytes present a shorter lifespan (32).

In conclusion, previous phenotypic investigations of Parp2\(^{-/-}\) mice revealed an important role of the PARP2 protein in the regulation of lipid metabolism (24), erythropoiesis (9), thymopoiesis (32) and spermatogenesis (6). Here, we highlight a new phenotype in Parp2\(^{-/-}\) mice associated with the deregulation of thymopoiesis, resulting in a systemic iNKT deficiency, leading to protection against ConA-induced liver injury.

Acknowledgements

This work was supported by INSERM, The Ministère de l’Education Nationale de la Recherche et de la Technologie, the University of Rennes 1, the Région Bretagne and the “Ligue Contre le Cancer, Comités du Grand Ouest”. AF was supported by a PhD fellowship from the Région Bretagne. We would like to thank the dedicated
platforms for immunohistochemistry analysis and animal house facilities (i.e. H2P2 and animal house platforms) of SFR BIOSIT, University of Rennes 1, France.

References

Figures legends

Figure 1: The absence of PARP2 but not PARP1 protects mice from ConA induced-hepatitis. (A) Serum levels of serum AST and ALT in WT, Parp1−/−, and Parp2−/− mice, 11 h after PBS (n = 4 to 6) or ConA injection (n = 1 3 for WT, 8 for Parp1−/−, and 24 for Parp2−/−). (B) Representative images of H&E stained liver tissue sections, necrosis areas are outlined by the white dotted line. (C) Serum levels of ALT of WT or Parp2−/− mice 24 h after ConA treatment. (D) Levels of liver TNF-α, IFN-γ, IL-1β, and IL-4 transcripts from WT, Parp1−/−, and Parp2−/− mice 11 h after ConA administration. (E) Serum levels of TNF-α, IFN-γ and IL-6 in WT and Parp2−/− mice, 11 h after PBS (n = 4 to 6) or ConA injection (n= 6 to 11). For the scatter plots, errors bars represent + SEM. (* #p < 0.05; ** ## p < 0.01; *** ### p < 0.001; ns: non-significant).

Figure 2: PARP2 deficiency results in a decrease in the number of liver iNKT cells. (A) Gating strategy used to analyze lymphocyte subpopulations (NKT, NK, T cells, B cells) and myeloid cells in the liver and spleen. The gating strategy for liver immune cells is presented. (B) Absolute number of liver immune cells. (C) Absolute number of T lymphocytes (CD3+ TCRVb+NK1.1−), CD4-positive cells (in black) and CD8-positive cells (in white). (D) Absolute number of NKT cells (CD3+ TCRVb+NK1.1−) in the liver (E) Representative dot plot showing NKT subsets in the liver (left panel) and absolute number of liver iNKT cells (corresponding to aGalCer+CD4+ and aGalCer+CD4− cells) (middle panel) and liver NKT DN-cells (aGalCer-CD4−) (right panel). (F) Representative dot plot showing liver NK-cell population (left part) and absolute number of liver NK cells (NK1.1+CD3−) (right panel). (G) Absolute number of liver B-lymphocytes (CD19+CD11b) and (H) myeloid...
cells (GR1intCD11b+ and GR1highCD11b+). All suspensions of liver immune cells from non-treated mice, aged 5 or 10 to 12 weeks, were obtained from the livers of WT or Parp2-/- mice. Each dot in the graph represents the number of cells recovered from one liver. The line and error bars represent the mean +/- SEM. For the histograms, the errors bars represent + SD. (* #p < 0.05; ** ## p < 0.01; *** ### p < 0.001; ns: non-significant).

Figure 3: PARP2 deficiency does not affect ConA-induced liver-leucocyte recruitment or activation. (A) Absolute number of liver immune cells from WT or Parp2-/- adult mice, non-treated (Ctl) or treated with ConA. Immune cells were isolated 11 or 24 h after ConA treatment. (B) Absolute number of NKT-cells from the livers of WT or Parp2-/- mice at steady state (Ctl) or 11 h after ConA treatment. (C) Absolute number of lymphocytes: T cells, B cells, and NK cells (upper panel) and myeloid cells (lower part) from liver of WT or Parp2-/- mice at steady state or 11 h after ConA treatment. (D) Representation of the activation marker (CD69) of T-lymphocytes CD8+ (NK1.1-TCRVb+CD3+CD8+) in the liver of WT or Parp2-/- mice treated or not with ConA. The line and error bars represent the mean + SD (* #p < 0.05; ** ## p < 0.01; *** ### p < 0.001; ns: non-significant).

Figure 4: PARP2 deficiency results in a reduction in the number of iNKT cells in the spleen. (A) Number of splenocytes of non-treated WT and Parp2-/- mice, aged 5 (early adult mice) or 10 at 12 weeks (adult mice). (B) Percentage of T lymphocytes (CD3+), TCRVb+NK1.1-), (C) B-ymphocytes (CD19+CD11b-), (D) total NKT cells (CD3+TCRVb+NK1.1+) (left panel), and NKT subsets: iNKT (NKT, α-GalCer+) (midle panel) and NKT-DN (NKT, α-GalCer- CD4-) (right panel), (E) NK cells (CD3-NK1.1+)
determined by flow cytometry analysis from spleens of early-adult or adult WT and
Parp2^{-/-} mice. Each dot in the graph represents the number of cells recovered from
one liver. The lines and error bars represent the mean +/- SEM. (* p <0.05; ** p <
0.01; *** p < 0.001; ns: non-significant).

Figure 5: PARP2 deficiency results in a decreased number of CD4/CD8 DP and
SP cells as well as iNKT cells. (A) Representative staining profiles of CD4 and CD8
single or double positive cells from the thymus of non-treated five-week-old WT or
Parp2^{-/-} mice. (B) Graph showing total number and the number of CD4⁺CD8⁺ double
positive thymocytes. (C) Representative staining profile of αGalCer positive
thymocytes. (D) Representation of mature T-cell markers (CD3 and TCRVβ) of
αGalCer positive thymocytes. Each dot in the graph represent the number of cells
recovered from one liver. The lines and errors bars represent the mean +/- SEM. (*
p<0.05; ** p<0.01; *** p<0.001; ns: non-significant).

Figure 6: Parp2^{-/-} mice display an increased number of Ter119⁺-cells but not of
other mature or immature subsets. (A) Gating strategy used to analyze bone
marrow immune cell subsets. (B) Absolute number of cells recovered from two
femurs of WT or Parp2^{-/-} adult (10 at 12 weeks old) mice. (C) Absolute cell number
for each mature bone marrow immune cells subset: Ter119⁺, CD19⁺, CD3⁺,
GR1^{high}CD11b⁺, and GR1^{int}CD11b⁺. (D) Absolute number of immature Lin- bone
marrow immune cells (Ter119⁻CD19⁻CD3⁻GR1⁻CD11b⁻) (left panel) and the specific
MP (Lin-ckit+Sca-) and LSK (Lin-ckit+Sca+) subsets (right panel). Each dot in the
graph represents the number of cells recovered from one liver. The lines and errors
bars represent the mean +/- SEM. (* p<0.05; ** p<0.01; *** p<0.001; ns: non-significant).
Figure 1

A

B

WT Parp2^{−/−} HES-24h pi ConA

C

D

Liver lysates

E

Serum cytokines
Figure 2

A. NK (CD3+ TCRVβ+ NK1.1+) and CD4+ TCRVβ+ cells gated on NK1.1-CD3+ and CD3+TCRVβ+.

B. Liver immune cells

C. LT (CD3+ TCRVβ+ NK1.1+) cell number per liver.

D. NKT (CD3+ TCRVβ+ NK1.1+) cell number per liver.

E. iNKT (α-GalCer+) and NKT DN (αGalCer- CD4+).

F. NK (CD3+ NK1.1+) cell number per liver.
Figure 3

A ConA (12 mg/kg) B NKT (CD3+ TCRVβ + NK1.1+)

<table>
<thead>
<tr>
<th>cell number</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.0×10^6</td>
<td></td>
<td>4.0×10^6</td>
<td></td>
<td>6.0×10^6</td>
<td></td>
<td>8.0×10^6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total liver immune cells</td>
<td>24h</td>
<td>11h</td>
<td>Ctl</td>
<td></td>
<td>ConA-11h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C LT (CD3+ TCRVβ + NK1.1−) LB (CD19+) NK (CD3+ NK1.1−)

<table>
<thead>
<tr>
<th>nb LT in liver</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
</tr>
</thead>
<tbody>
<tr>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nb LB in liver</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nb NK in liver</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
</tr>
</thead>
<tbody>
<tr>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

D Ly CD8+

<table>
<thead>
<tr>
<th>nb GR1int CD11b+ cells in liver</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
</tr>
</thead>
<tbody>
<tr>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nb GR1high CD11b+</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nb NK in liver</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
<th>WT</th>
<th>Parp2−/−</th>
</tr>
</thead>
<tbody>
<tr>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

GR1high CD11b+ GR1int CD11b+

Ly CD8+ PBS ConA-11h CD69

WT Parp2−/−

PBS ConA-11h
Figure 4

A

B

C

D

E
Figure 5

A

B

C

D

Thymocytes αGalCer+

WT

Parp2−/−
Lin− cells

Number of cells

WT
Parp2−/−

ns

0
500000
1000000
1.5 × 10^6

MP
LSK

Number of cells

Lin−

Number of cells

WT
Parp2−/−

ns

0
2.0 × 10^6
4.0 × 10^6
6.0 × 10^6

ns

D
Table 1. Sequence of primers used for qPCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse 18S</td>
<td>5′-CGCCGCTAGAGGTGAAATTC-3′</td>
<td>5′-TTGGCAAAATGCTTTTCGCTC-3′</td>
</tr>
<tr>
<td>Mouse TNFα</td>
<td>5′-TAGCTCCCAGAAAGCAAGC-3′</td>
<td>5′-TTTTCTGGAGGGAGATGTGG-3′</td>
</tr>
<tr>
<td>Mouse IFN-γ</td>
<td>5′AGGTCAACAACCCACAGGTC-3′</td>
<td>5′ATCAGCAGCGACTCCTTTTC3′</td>
</tr>
<tr>
<td>Mouse IL-1β</td>
<td>5′-GAAGAAGTGCCCATCTCTG-3’</td>
<td>5′-AGCTCATATGGGTCCGACAG-3′</td>
</tr>
<tr>
<td>Mouse IL-4</td>
<td>5′-GGCTTCAAGGTTGCTTG-3′</td>
<td>5′-GGACTTGGAATTTGATTCATGG-3′</td>
</tr>
</tbody>
</table>