, All chemicals were purchased from Sigma Aldrich (St. Quentin Fallavier, France), unless otherwise stated and the protease inhibitor cocktail was from Roche

G. Healthcare, . Sigma-aldrich, and . St, Quentin Fallavier, France) with the type II restriction enzymes BamHI and XhoI for glutathione S-transferase (GST) fusion at the N-terminus (GenScript) Plasmids were transformed into chemically competent E. coli BL21(DE3), which were grown overnight at 37 ? C in 2 × YT medium containing 100 µg/mL ampicillin. These cultures were used to inoculate 1 L volumes of 2 × YT medium (containing 100 µg/mL ampicillin) in 5 L flasks. The cultures were allowed to grow at 37 ? C before the temperature was decreased to 18 ? C. At an optical density at 600 nm (OD600) of about 1.0, protein expression was induced overnight at 18 ? C with 0.1 mM isopropyl ?-D-1-thiogalactopyranoside (IPTG) The bacteria were harvested by centrifugation and were frozen at ?20 ? C. Cells were resuspended in a lysis buffer mM PMSF) in the presence of protease inhibitor cocktail (Roche), and lysozyme was added to 1 mg/mL and incubated 1 h at 4 ? C with gentle agitation) were added to degrade nucleic acids and decrease sample viscosity. After centrifugation at 4 ? C, the soluble fraction was collected and proteins were bound to Glutathione sepharose 4B beads (GE Healthcare) Beads were washed three times with lysis buffer and once, Production and Purification of the Parasitic Kinases The parasitic kinase genes (Supplementary Data, Table S3) were optimized for expression in E. coli Cells were then sonicated on ice before 6 mM MgCl 2 and 25 U/mL benzonase mM MgCl 2 , 2 mM DTT, 1 mM sodium vanadate). Proteins were eluted with elution buffer (buffer C containing 30 mM reduced glutathione, 15% glycerol, p.15

, Protein Kinase Assays Kinase activities were assayed in buffer A or C at 30 ? C at a final ATP concentration of 15 µmol/L. Blank values were subtracted and activities were expressed in percent of the maximal activity, i.e., in the absence of inhibitors. Controls were performed with appropriate dilutions of DMSO. The GS-1, CKS, CDK7/9 tide and RS peptide substrates were obtained from Proteogenix

, (human, recombinant) were prepared as previously described [6,7] Their kinase activity was assayed in buffer A, with 1 mg histone H1/mL, in the presence of 15 µmol/L [?-33 P] ATP (3000 Ci/mmol; 10 mCi/mL) in a final volume of 30 µL After 30 min incubation at 30 ? C, the reaction was stopped by harvesting onto P81 phosphocellulose supernatant (Whatman, Dutscher SAS, Brumath, France) using a FilterMate harvester (PerkinElmer, Courtaboeuf, France) and were washed in 1% phosphoric acid. Scintillation fluid was added and the radioactivity measured in a Packard counter. CDK9/cyclin T (human, recombinant, expressed in insect cells) was assayed as described for CDK1/cyclin B, but using CDK7/9 tide (YSPTSPSYSPTSPSYSPTSPSKKKK) (8.1 µg/assay) as a substrate. GSK-3?/? (porcine brain, native) and PfGSK3 (plasmodium falciparum, recombinant, expressed in E. coli as GST fusion proteins) was assayed, CDK1/cyclin B (M phase starfish oocytesYRRAAVPPSPSLSRHSSPHQSpEDEEE) (pS stands for phosphorylated serine), a GSK-3 specific substrate, p.1

/. Ck1?, R. Roskoski, and . Jr, LmCK1 (leishmania major, recombinant, expressed in E. coli as HIS fusion proteins [34]) was assayed as described for CDK1 but in buffer C and using 25 µM CKS peptide (RRKHAAIGpSAYSITA), a CK1-specific substrate [55]. DYRK1A, 1B, 2 and 3 (Human, recombinant, expressed in E. coli as GST fusion proteins) were purified by affinity chromatography on glutathione-agarose and assayed as described for CDK1/cyclin References 1 A historical overview of protein kinases and their targeted small molecule inhibitors, Pharmacol. Res, vol.100, pp.1-23, 2015.

E. H. Fischer and E. G. Krebs, Conversion of phosphorylase b to phosphorylase a in muscle extracts, J. Biol. Chem, vol.216, pp.121-132, 1955.

P. Wu, T. E. Nielsen, and M. H. Clausen, Small-molecule kinase inhibitors: an analysis of FDA-approved drugs, Drug Discovery Today, vol.21, issue.1, pp.5-10, 2016.
DOI : 10.1016/j.drudis.2015.07.008

P. Wu, T. E. Nielsen, and M. H. Clausen, FDA-approved small-molecule kinase inhibitors, Trends in Pharmacological Sciences, vol.36, issue.7, pp.422-439
DOI : 10.1016/j.tips.2015.04.005

M. Debdab, S. Renault, S. Eid, O. Lozach, L. Meijer et al., An efficient method for the preparation of new analogs of leucettamine B under solvent-free microwave irradiation, Heterocycles, vol.78, pp.1191-1203, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00411456

M. Debdab, F. Carreaux, S. Renault, M. Soundararajan, O. Fedorov et al.,

L. Babault, T. Tahtouh, and B. Baratte, Leucettines, a class of potent inhibitors of cdc2-like kinases and dual specificity, tyrosine phosphorylation regulated kinases derived from the marine sponge leucettamine B: Modulation of alternative pre-RNA splicing, J. Med. Chem. J.M.; Filippakopoulos, P.; Soundararajan, M C, vol.54, pp.4172-4186, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00870007

R. S. Schmid, D. C. Lo, and F. Delhommel, Selectivity, cocrystal structures, and neuroprotective properties of leucettines, a family of protein kinase inhibitors derived from the marine sponge alkaloid leucettamine B, J. Med. Chem, vol.55, pp.9312-9330, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00870472

G. W. Chan, S. Mong, M. E. Hemling, A. J. Freyer, P. M. Offen et al., Receptor Antagonist: Leucettamine A and Related Imidazole Alkaloids from the Marine Sponge Leucetta microraphis, Journal of Natural Products, vol.56, issue.1, pp.116-121, 1993.
DOI : 10.1021/np50091a016

J. D. Sullivan, R. L. Giles, and R. E. Looper, 2-Aminoimidazoles from Leucetta Sponges: Synthesis and Biology of an Important Pharmacophore, Current Bioactive Compounds, vol.5, issue.1, pp.39-78, 2009.
DOI : 10.2174/157340709787580892

P. B. Koswatta and C. J. Lovely, Structure and synthesis of 2-aminoimidazole alkaloids from Leucetta and Clathrina sponges, Nat. Prod. Rep., vol.43, issue.3, pp.511-528, 2011.
DOI : 10.1016/00404-0399(50)1770I-

M. Roué, E. Quévrain, I. Domart-coulon, and M. L. Bourguet-kondracki, Assessing calcareous sponges and their associated bacteria for the discovery of new bioactive natural products, Natural Product Reports, vol.2009, issue.7, pp.739-751
DOI : 10.1007/s12275-010-0017-x

A. ?ula, D. Kikelj, and J. Ila?, 2-Aminoimidazoles in Medicinal Chemistry, Mini-Reviews in Medicinal Chemistry, vol.13, issue.13, pp.1921-1943, 2013.
DOI : 10.2174/1389557511313130007

Z. Yin, M. Zhu, E. H. Davidson, D. J. Bottjer, F. Zhao et al., Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian, Proc. Natl. Acad. Sci. USA 2015, pp.1453-1460
DOI : 10.1073/pnas.1414577112

A. L. Rossi, A. P. Campos, M. M. Barroso, M. Klautau, B. S. Archanjo et al., Long-range crystalline order in spicules from the calcareous sponge Paraleucilla magna (Porifera, Calcarea), Acta Biomaterialia, vol.10, issue.9, pp.3875-3884, 2014.
DOI : 10.1016/j.actbio.2014.01.023

R. A. Davis, W. Aalbersberg, S. Meo, R. Moreira-da-rocha, and C. M. Ireland, The isolation and synthesis of polyandrocarpamines A and B. Two new 2-aminoimidazolone compounds from the Fijian ascidian, Polyandrocarpa sp., Tetrahedron, vol.58, issue.16, pp.3263-3269, 2002.
DOI : 10.1016/S0040-4020(02)00228-4

R. A. Davis, P. S. Baron, J. E. Neve, and C. Cullinane, A microwave-assisted stereoselective synthesis of polyandrocarpamines A and B, Tetrahedron Letters, vol.50, issue.8, pp.880-882, 2008.
DOI : 10.1016/j.tetlet.2008.12.010

T. Lindel and H. Hoffmann, Synthesis of dispacamide from the marine sponge agelas dispar, Tetrahedron Letters, vol.38, issue.52, pp.8935-8938, 1997.
DOI : 10.1016/S0040-4039(97)10387-2

P. M. Fresneda, P. Molina, and M. A. Sanz, A convergent approach to midpacamide and dispacamide pyrrole-imidazole marine alkaloids, Tetrahedron Letters, vol.42, issue.5, pp.851-854, 2001.
DOI : 10.1016/S0040-4039(00)02120-1

N. Travert and A. Mourabit, A Likely Biogenetic Gateway Linking 2-Aminoimidazolinone Metabolites of Sponges to Proline:?? Spontaneous Oxidative Conversion of the Pyrrole-Proline-Guanidine Pseudo-peptide to Dispacamide A, Journal of the American Chemical Society, vol.126, issue.33, pp.10252-10253, 2004.
DOI : 10.1021/ja047574e

K. H. Hollenbeak and F. J. Schmitz, Aplysinopsin: Antineoplastic tryptophan derivative from the marine sponge Verongia spengelii, Lloydia, vol.40, pp.479-481, 1977.

D. Bialonska and J. K. Zjawiony, Aplysinopsins - Marine Indole Alkaloids: Chemistry, Bioactivity and Ecological Significance, Marine Drugs, vol.33, issue.2, pp.166-183, 2009.
DOI : 10.1016/j.gene.2006.03.028

M. Roué, I. Domart-coulon, A. Ereskovsky, C. Djediat, T. Perez et al., Journal of Natural Products, vol.73, issue.7, pp.1277-1282, 2010.
DOI : 10.1021/np100175x

G. Cimino, S. De-rosa, S. De-stefano, L. Mazzarella, R. Puliti et al., Isolation and X-ray crystal structure of a novel bromo-compound from two marine sponges, Tetrahedron Letters, vol.23, issue.7, pp.767-768, 1982.
DOI : 10.1016/S0040-4039(00)86943-9

G. M. Sharma, J. Buyer, and M. W. Pomerantz, Characterization of a yellow compound isolated from the marine sponge Phakellia flabellata, Journal of the Chemical Society, Chemical Communications, vol.10, issue.10, pp.435-436, 1980.
DOI : 10.1039/c39800000435

D. H. Williams and J. Faulkner, Isomers and Tautomers of Hymenialdisine and Debromohymenialdisine, Natural Product Letters, vol.50, issue.1, pp.57-64, 1996.
DOI : 10.1016/0040-4039(94)02222-W

Y. Y. Xu, K. Yakushijin, and D. A. Horne, The Journal of Organic Chemistry, vol.62, issue.3, pp.456-464, 1997.
DOI : 10.1021/jo9619746

G. Papeo, H. Posteri, D. Borghi, and M. Varasi, Organic Letters, vol.7, issue.25, pp.5641-5644, 2005.
DOI : 10.1021/ol052266m

T. N. Nguyen and J. J. Tepe, Preparation of Hymenialdisine, Analogues and Their Evaluation as Kinase Inhibitors, Current Medicinal Chemistry, vol.16, issue.24, pp.3122-3143, 2009.
DOI : 10.2174/092986709788803015

L. Meijer, A. M. Thunnissen, A. White, M. Garnier, M. Nikolic et al., Inhibition of cyclin-dependent kinases, GSK-3?? and CK1 by hymenialdisine, a marine sponge constituent, Chemistry & Biology, vol.7, issue.1, pp.51-63, 2000.
DOI : 10.1016/S1074-5521(00)00063-6

Y. Wan, W. Hur, C. Y. Cho, Y. Liu, F. J. Adrian et al., Synthesis and Target Identification of Hymenialdisine Analogs, Chemistry & Biology, vol.11, issue.2, pp.247-259, 2004.
DOI : 10.1016/j.chembiol.2004.01.015

URL : https://hal.archives-ouvertes.fr/hal-00020127

T. D. Nguyen, X. C. Nguyen, A. Longeon, A. Keryhuel, M. H. Le et al., Antioxidant benzylidene 2-aminoimidazolones from the Mediterranean sponge Phorbas topsenti, Tetrahedron, vol.68, issue.45, pp.9256-9259, 2012.
DOI : 10.1016/j.tet.2012.08.074

Y. Ling, Z. Q. Wang, Y. A. Xiao, C. Zhu, L. Shen et al., Benzylidene 2-Aminoimidazolones Derivatives: Synthesis and in Vitro Evaluation of Anti-tumor Carcinoma Activity, Chemical and Pharmaceutical Bulletin, vol.61, issue.10, pp.1081-1084, 2013.
DOI : 10.1248/cpb.c13-00340

E. Droucheau, A. Primot, V. Thomas, D. Mattei, M. Knockaert et al., Plasmodium falciparum glycogen synthase kinase-3: molecular model, expression, intracellular localisation and selective inhibitors, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1697, issue.1-2, pp.181-196, 2004.
DOI : 10.1016/j.bbapap.2003.11.023

URL : https://hal.archives-ouvertes.fr/hal-00020125

N. Rachidi, J. F. Taly, E. Durieu, O. Leclercq, N. Aulner et al., ABSTRACT, Antimicrobial Agents and Chemotherapy, vol.58, issue.3, pp.1501-1515, 2014.
DOI : 10.1128/AAC.02022-13

M. W. Karaman, S. Herrgard, D. K. Treiber, P. Gallant, C. E. Atteridge et al., A quantitative analysis of kinase inhibitor selectivity, Nature Biotechnology, vol.50, issue.1, pp.127-132, 2008.
DOI : 10.1021/jm070562u

U. Soppa, J. Schumacher, V. Ortiz, T. Pasqualon, F. J. Tejedor et al., and Cyclin D1 and induces cell cycle exit and neuronal differentiation, Cell Cycle, vol.359, issue.13, pp.2084-2100, 2014.
DOI : 10.1042/0264-6021:3590497

URL : http://www.tandfonline.com/doi/pdf/10.4161/cc.29104?needAccess=true

S. Najas, J. Arranz, P. A. Lochhead, A. L. Ashford, D. Oxley et al., DYRK1A-mediated cyclin D1 degradation in neural stem cells contributes to the neurogenic cortical defects in Down syndrome. EBioMedicine 2015, pp.120-134

P. S. Baron, J. E. Neve, D. Camp, L. Suraweera, A. Lam et al., Design, synthesis and spectroscopic characterisation of a focused library based on the polyandrocarpamine natural product scaffold, Magnetic Resonance in Chemistry, vol.71, issue.6, pp.358-363, 2013.
DOI : 10.1002/hlca.19880710412

S. Carmely and M. Ilan, 2-amino imidazole alkaloids from the marine sponge leucetta chagosensis, Tetrahedron, vol.45, issue.7, pp.2193-2200, 1989.
DOI : 10.1016/S0040-4020(01)80079-X

K. A. Alvi, P. Crews, and D. G. Loughhead, Structures and Total Synthesis of 2-Aminoimidazoles from a Notodoris Nudibranch, Journal of Natural Products, vol.54, issue.6, pp.1509-1515, 1991.
DOI : 10.1021/np50078a004

K. A. Alvi, B. M. Peters, and L. M. Hunter, 2-Aminoimidazoles and their zinc complexes from indo-pacific leucetta sponges and notodoris nudibranchs, Tetrahedron, vol.49, issue.2, pp.329-336, 1993.
DOI : 10.1016/S0040-4020(01)80302-1

T. L. Nguyen, C. Fruit, Y. Hérault, L. Meijer, and T. Besson, Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) inhibitors: a survey of recent patent literature, Expert Opinion on Therapeutic Patents, vol.19, issue.11, 2017.
DOI : 10.1016/S1474-4422(16)30034-5

URL : https://hal.archives-ouvertes.fr/hal-02046302

T. Tahtouh, E. Durieu, B. Villiers, C. Bruyere, T. L. Nguyen et al., Structure/activity relationship in the leucettine family of kinase inhibitors, J. Med. Chem, 2017.

X. Fant, E. Durieu, G. Chicanne, B. Payrastre, D. Sbrissa et al., cdc-Like/Dual-Specificity Tyrosine Phosphorylation-Regulated Kinases Inhibitor Leucettine L41 Induces mTOR-Dependent Autophagy: Implication for Alzheimer's Disease, Molecular Pharmacology, vol.85, issue.3, pp.441-450, 2014.
DOI : 10.1124/mol.113.090837

G. Naert, V. Ferré, J. Meunier, E. Keller, S. Malmström et al., Leucettine L41, a DYRK1A-preferential DYRKs/CLKs inhibitor, prevents memory impairments and neurotoxicity induced by oligomeric A??25???35 peptide administration in mice, European Neuropsychopharmacology, vol.25, issue.11, pp.2170-2182, 2015.
DOI : 10.1016/j.euroneuro.2015.03.018

URL : https://hal.archives-ouvertes.fr/hal-01146496

M. K. Thorson, R. M. Van-wagoner, M. K. Harper, C. M. Ireland, T. Majtan et al., Marine natural products as inhibitors of cystathionine beta-synthase activity, Bioorganic & Medicinal Chemistry Letters, vol.25, issue.5, pp.1064-1066, 2015.
DOI : 10.1016/j.bmcl.2015.01.013

N. Zhang, Z. Zhang, I. L. Wong, S. Wan, L. M. Chow et al., 4,5-Di-substituted benzyl-imidazol-2-substituted amines as the structure template for the design and synthesis of reversal agents against P-gp-mediated multidrug resistance breast cancer cells, European Journal of Medicinal Chemistry, vol.83, issue.83, pp.74-83, 2014.
DOI : 10.1016/j.ejmech.2014.06.016

J. C. Boehm, J. G. Gleason, I. Pendrak, H. M. Sarau, D. B. Schmidt et al., Synthesis and LTB4 receptor antagonist activities of the naturally occurring LTB4 receptor antagonist leucettamine A and related analogs, Journal of Medicinal Chemistry, vol.36, issue.22, pp.3333-3340, 1993.
DOI : 10.1021/jm00074a014

D. J. Newman and G. M. Cragg, Current Status of Marine-Derived Compounds as Warheads in Anti-Tumor Drug Candidates, Marine Drugs, vol.8, issue.4, p.99, 2017.
DOI : 10.1126/scitranslmed.aag1093

D. J. Newman and G. M. Cragg, Drugs and Drug Candidates from Marine Sources: An Assessment of the Current ???State of Play???, Planta Medica, vol.82, issue.09/10, pp.775-789
DOI : 10.1055/s-0042-101353

P. Djura and D. J. Faulkner, Metabolites of the marine sponge Dercitus species, The Journal of Organic Chemistry, vol.45, issue.4, pp.735-737, 1980.
DOI : 10.1021/jo01292a043

N. Roué and J. Bergman, Synthesis of the marine alkaloid leucettamine B, Tetrahedron, vol.55, issue.51, pp.14729-14738, 1999.
DOI : 10.1016/S0040-4020(99)00918-7

S. Guihéneuf, L. Paquin, F. Carreaux, E. Durieu, L. Meijer et al., An efficient approach to dispacamide A and its derivatives, Org. Biomol. Chem., vol.38, issue.5, pp.978-987, 2012.
DOI : 10.1002/(SICI)1097-458X(200004)38:4<265::AID-MRC637>3.0.CO;2-#

A. Primot, B. Baratte, M. Gompel, A. Borgne, S. Liabeuf et al., Purification of GSK-3 by Affinity Chromatography on Immobilized Axin, Protein Expression and Purification, vol.20, issue.3, pp.394-404, 2000.
DOI : 10.1006/prep.2000.1321

J. Reinhardt, Y. Ferandin, and L. Meijer, Purification of CK1 by affinity chromatography on immobilised axin, Protein Expression and Purification, vol.54, issue.1, pp.101-109, 2007.
DOI : 10.1016/j.pep.2007.02.020

URL : https://hal.archives-ouvertes.fr/hal-00169405

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http, Licensee MDPI