Multiplexing molecular tension sensors reveals piconewton force gradient across talin-1

Abstract : Förster resonance energy transfer (FRET)-based tension sensor modules (TSMs) are available for investigating how distinct proteins bear mechanical forces in cells. Yet, forces in the single piconewton (pN) regime remain difficult to resolve, and tools for multiplexed tension sensing are lacking. Here, we report the generation and calibration of a genetically encoded, FRET-based biosensor called FL-TSM, which is characterized by a near-digital force response and increased sensitivity at 3-5 pN. In addition, we present a method allowing the simultaneous evaluation of coexpressed tension sensor constructs using two-color fluorescence lifetime microscopy. Finally, we introduce a procedure to calculate the fraction of mechanically engaged molecules within cells. Application of these techniques to new talin biosensors reveals an intramolecular tension gradient across talin-1 that is established upon integrin-mediated cell adhesion. The tension gradient is actomyosin- and vinculin-dependent and sensitive to the rigidity of the extracellular environment.
Type de document :
Article dans une revue
Nature Methods, 2017, 14, pp.1090-1096. 〈10.1038/nmeth.4431〉
Liste complète des métadonnées
Contributeur : Xavier Chard-Hutchinson <>
Soumis le : vendredi 24 novembre 2017 - 11:18:17
Dernière modification le : mercredi 16 mai 2018 - 11:23:52




Pia Ringer, Andreas Weißl, Anna-Lena Cost, Andrea Freikamp, Benedikt Sabass, et al.. Multiplexing molecular tension sensors reveals piconewton force gradient across talin-1. Nature Methods, 2017, 14, pp.1090-1096. 〈10.1038/nmeth.4431〉. 〈hal-01647129〉



Consultations de la notice