J. Bos, H. Rehmann, and A. Wittinghofer, GEFs and GAPs: Critical Elements in the Control of Small G Proteins, Cell, vol.129, issue.5, pp.865-877, 2007.
DOI : 10.1016/j.cell.2007.05.018

L. Bruce, B. Goode, J. Eskin, and B. Wendland, Actin and Endocytosis in Budding Yeast Genetics, pp.315-358, 2015.

J. Cherfils and M. Zeghouf, Regulation of Small GTPases by GEFs, GAPs, and GDIs, Physiological Reviews, vol.93, issue.1, pp.269-309, 2013.
DOI : 10.1152/physrev.00003.2012

A. Clark and E. Paluch, Mechanics and Regulation of Cell Shape During the Cell Cycle, Results Probl Cell Differ, vol.53, pp.31-73, 2011.
DOI : 10.1007/978-3-642-19065-0_3

G. Egea, C. Serra-peinado, M. Gavilan, and R. Rios, Cytoskeleton and Golgiapparatus interactions: a two-way road of function and structure, Cell Health and Cytoskeleton, vol.7, pp.37-54, 2015.

A. Gilman, G Proteins: Transducers of Receptor-Generated Signals, Annual Review of Biochemistry, vol.56, issue.1, 1987.
DOI : 10.1146/annurev.bi.56.070187.003151

M. Feuerer, Origin of monocytes and macrophages in a committee progenitor, 2013.

M. Hoff, A Real Stretch: Mechanisms Behind Cell Elongation, PLoS Biology, vol.12, issue.2, pp.1001782-1001799, 2014.
DOI : 10.1371/journal.pbio.1001782.g001

M. Kloc, L. Xc, and R. Ghobrial, RhoA cytoskeletal pathway to transplantation, J Immunol Clin Res, vol.2, p.1012, 2014.

C. Lee, Y. Kim, J. Jang, J. Park, E. Kim et al., Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces, Nanotechnology, vol.27, issue.8, 2016.
DOI : 10.1088/0957-4484/27/8/085101

S. Park, Contribution of actin filaments and microtubules to cell elongation and alignment depends on the grating depth of microgratings, J Nanobiotechnology, vol.14, pp.35-49, 2016.

B. Lin, M. Tsai, C. Lii, and T. Wang, IP3 and calcium signaling involved in the reorganization of the actin cytoskeleton and cell rounding induced by cigarette smoke extract in human endothelial cells, Environmental Toxicology, vol.87, issue.11, pp.1293-1306, 2016.
DOI : 10.3791/3406

Y. Liu, N. Tejpal, J. You, X. Li, R. Ghobrial et al., ROCK inhibition impedes macrophage polarity and functions, Cellular Immunology, vol.300, pp.54-62, 2016.
DOI : 10.1016/j.cellimm.2015.12.005

Y. Liu, W. Chen, L. Minze, J. Kubiak, X. Li et al., Dissonant response of M0/M2 and M1 bone-marrow-derived macrophages to RhoA pathway interference, Cell and Tissue Research, vol.135, issue.3, pp.707-720, 2016.
DOI : 10.1016/j.thromres.2015.03.020

URL : https://hal.archives-ouvertes.fr/hal-01439380

. Macrophage, monocyte-specific deletion of Ras homolog gene family member A (RhoA) downregulates fractalkine receptor and inhibits chronic rejection of mouse cardiac allografts, J Heart Lung Transplant, vol.36, pp.340-354

G. Beznoussenko, A. Mironov, D. Matteis, and M. , The biogenesis of the Golgi ribbon: the roles of membrane input from the ER and of GM130, Mol Biol Cell, vol.18, pp.1595-608, 2007.

F. Maxfield and T. Mcgraw, Endocytic recycling, Nature Reviews Molecular Cell Biology, vol.5, issue.2, 2004.
DOI : 10.1038/nrm1315

F. Mcwhorter, T. Wang, P. Nguyen, T. Chung, and W. Liu, Modulation of macrophage phenotype by cell shape, Proceedings of the National Academy of Sciences, vol.93, issue.3, pp.17253-17261, 2013.
DOI : 10.1016/j.biomaterials.2013.02.065

S. Horiuchi and M. Ando, Endocytic pathway of scavenger receptors via trans-Golgi system in bovine alveolar macrophages, Lab Invest, vol.71, pp.409-416, 1994.

P. Murray and T. Wynn, Protective and pathogenic functions of macrophage subsets, Nature Reviews Immunology, vol.332, issue.11, pp.723-760, 2011.
DOI : 10.1126/science.1201475

N. Nakamura, Emerging New Roles of GM130, a cis-Golgi Matrix Protein, in Higher Order Cell Functions, Journal of Pharmacological Sciences, vol.112, issue.3, pp.255-264, 2010.
DOI : 10.1254/jphs.09R03CR

D. Prosser and B. Wendland, Conserved roles for yeast Rho1 and mammalian RhoA GTPases in clathrin-independent endocytosis, Small GTPases, vol.18, issue.4, pp.229-235, 2012.
DOI : 10.1242/jcs.018036

B. Glicka, A Role for Actin, Cdc1p, and Myo2p in the Inheritance of Late Golgi Elements in Saccharomyces cerevisiae, J Cell Biol, vol.153, pp.47-62, 2001.

Y. Zhenga, Small-molecule inhibitors targeting G-protein?coupled Rho guanine nucleotide exchange factors, Proc Natl Acad Sci U S A, vol.110, pp.3155-3160, 2013.

W. Seibel, M. Wortman, and Y. Zheng, Rational design of small molecule inhibitors targeting RhoA subfamily Rho GTPases, Chem Biol, vol.19, pp.699-710, 2012.

T. Wang, T. Luu, A. Chen, M. Khine, and W. Liu, Topographical modulation of macrophage phenotype by shrink-film multi-scale wrinkles, Biomaterials Science, vol.93, issue.6, pp.948-52, 2016.
DOI : 10.1016/j.mattod.2015.01.019

A. Wheeler and A. Ridley, Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility, Experimental Cell Research, vol.301, issue.1, pp.43-52, 2004.
DOI : 10.1016/j.yexcr.2004.08.012

A. Bershadskya, Involvement of the Rho?mDia1 pathway in the regulation of Golgi complex architecture and dynamics, Mol Biol Cell, vol.22, pp.2900-2911, 2011.

. Seemannj, E. Jokitalo, M. Pypaert, and G. Warren, Matrix proteins can generate the higher order architecture of the Golgi apparatus, Nature, vol.407, pp.1022-1026, 2000.

M. Kloc, J. Kubiak, X. Li, and R. Ghobrial, The newly found functions of MTOC in immunological response, Journal of Leukocyte Biology, vol.95, issue.3, pp.417-447, 2014.
DOI : 10.1189/jlb.0813468

URL : https://hal.archives-ouvertes.fr/hal-00979042