B. Berg, Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality, Biogeochemistry, vol.14, issue.3, pp.127-159, 1993.
DOI : 10.1139/b76-041

M. E. Harmon, Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparison, Global Change Biology, vol.9, issue.5, pp.1320-1338, 2009.
DOI : 10.1007/s004420100740

T. R. Moore, Litter decomposition rates in Canadian forests, Global Change Biology, vol.25, issue.1, pp.75-82, 1999.
DOI : 10.2134/jeq1996.00472425002500050027x

D. H. Wall, Global decomposition experiment shows soil animal impacts on 476 decomposition are climate-dependent, Glob. Change Biol, vol.14, pp.2661-2677, 2008.

G. B. Bonan, M. D. Hartman, W. J. Parton, and W. Wieder, Evaluating litter decomposition in earth system models with long-term litterbag experiments: an example using the Community Land Model version 4 (CLM4), Global Change Biology, vol.22, issue.3, pp.957-974, 2013.
DOI : 10.1029/2007GB002939

C. Averill, B. G. Waring, and C. Hawkes, Historical precipitation predictably alters the 482 shape and magnitude of microbial functional response to soil moisture, Glob. Change, vol.483

M. S. Strickland, A. D. Keiser, and M. A. Bradford, Climate history shapes contemporary leaf litter decomposition, Biogeochemistry, vol.14, issue.2-3, pp.165-174, 2015.
DOI : 10.1111/j.1365-2486.2009.02042.x

N. Fierer, Cross-biome metagenomic analyses of soil microbial communities and their functional attributes, Proceedings of the National Academy of Sciences, vol.9, issue.5, pp.21390-21395, 2012.
DOI : 10.1186/1471-2105-9-386

S. E. Evans and M. D. Wallenstein, Climate change alters ecological strategies of soil bacteria, Ecology Letters, vol.7, issue.2, pp.155-164, 2014.
DOI : 10.1038/ismej.2012.176

C. R. Lawrence, J. C. Neff, and J. P. Schimel, Does adding microbial mechanisms of decomposition improve soil organic matter models? A comparison of four models using data from a pulsed rewetting experiment, Soil Biology and Biochemistry, vol.41, issue.9, pp.1923-1934, 2009.
DOI : 10.1016/j.soilbio.2009.06.016

E. Hall, Understanding how microbiomes influence the systems they inhabit, p.515
DOI : 10.1101/065128

URL : https://www.biorxiv.org/content/early/2018/01/01/065128.full.pdf

R. Aerts, Climate, Leaf Litter Chemistry and Leaf Litter Decomposition in Terrestrial Ecosystems: A Triangular Relationship, Oikos, vol.79, issue.3, pp.439-449, 1997.
DOI : 10.2307/3546886

S. D. Allison, M. D. Wallenstein, and M. A. Bradford, Soil-carbon response to warming dependent on microbial physiology, Nature Geoscience, vol.39, issue.5, pp.336-340, 2010.
DOI : 10.1038/ngeo846

T. W. Crowther, Environmental stress response limits microbial necromass contributions to soil organic carbon, Soil Biology and Biochemistry, vol.85, pp.153-161, 2015.
DOI : 10.1016/j.soilbio.2015.03.002

S. D. Frey, J. Lee, J. M. Melillo, and J. Six, The temperature response of soil microbial efficiency and its feedback to climate, Nature Climate Change, vol.33, issue.4, pp.395-398, 2013.
DOI : 10.1016/S0038-0717(01)00101-8

J. P. Schimel and M. N. Weintraub, The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model, Soil Biology and Biochemistry, vol.35, issue.4, pp.549-526, 2003.
DOI : 10.1016/S0038-0717(03)00015-4

R. W. Buchkowski, O. J. Schmitz, and M. A. Bradford, Microbial stoichiometry overrides biomass as a regulator of soil carbon and nitrogen cycling, Ecology, vol.96, issue.4, pp.1139-1149, 2015.
DOI : 10.1890/14-1327.1.sm

E. C. Adair, Simple three-pool model accurately describes patterns of long-term 531 litter decomposition in diverse climates, Glob. Change Biol, vol.14, pp.2636-2660, 2008.

W. S. Currie, Cross-biome transplants of plant litter show decomposition models 533 extend to a broader climatic range but lose predictability at the decadal time scale. Glob, p.534

V. C. Smith and M. A. Bradford, Litter quality impacts on grassland litter decomposition 536

M. A. Bradford, G. M. Tordoff, T. Eggers, T. H. Jones, J. E. Newington et al., Microbiota, fauna, and mesh size interactions in litter decomposition, Oikos, vol.38, issue.2, pp.538-317, 2002.
DOI : 10.2307/1313536

S. Bokhorst and D. A. Wardle, Microclimate within litter bags of different mesh size, p.540

M. A. Bradford, Climate fails to predict wood decomposition at regional scales, Nature Climate Change, vol.14, issue.7, p.543
DOI : 10.1046/j.1365-2486.2002.00516.x

URL : http://www.srs.fs.usda.gov/pubs/ja/2014/ja_2014_bradford_001.pdf

A. D. Keiser, J. D. Knoepp, and M. A. Bradford, Disturbance Decouples Biogeochemical Cycles Across Forests of the Southeastern US, Ecosystems, vol.5, issue.7, pp.50-61, 2016.
DOI : 10.1016/0167-7012(86)90012-6

B. Waring, R. Adams, S. Branco, and J. S. Powers, Scale-dependent variation in nitrogen 547 cycling and soil fungal communities along gradients of forest composition and age in 548 regenerating tropical dry forests, pp.845-854, 2016.

M. J. Oakes, Commentary: Individual, ecological and multilevel fallacies, International Journal of Epidemiology, vol.18, issue.7, p.551
DOI : 10.1016/j.annepidem.2008.02.007

URL : https://academic.oup.com/ije/article-pdf/38/2/361/1865218/dyn356.pdf

W. S. Robinson, Ecological correlations and the behavior of individuals, Am. Socio. Rev, vol.553, issue.15, pp.351-357, 1950.

A. Gelman, B. Shor, J. Bafumi, and D. Park, Rich state, poor state, red state, blue state: 556 what's the matter with Connecticut? Qu, J. Poli. Sci, vol.2, pp.345-367, 2007.
DOI : 10.1515/9781400832118

A. Gelman and J. Hill, Data analysis using regression and multilevel/hierarchical models, 2007.
DOI : 10.1017/CBO9780511790942

J. Rousk, Biomass or growth? How to measure soil food webs to understand structure and function, Soil Biology and Biochemistry, vol.102, pp.45-47, 2016.
DOI : 10.1016/j.soilbio.2016.07.001

S. D. Allison, Microbial abundance and composition influence litter decomposition response to environmental change, Ecology, vol.94, issue.3, pp.714-725, 2013.
DOI : 10.1016/j.soilbio.2010.06.005

J. P. Anderson and K. H. Domsch, A physiological method for the quantitative measurement of microbial biomass in soils, Soil Biology and Biochemistry, vol.10, issue.3, pp.215-221, 1978.
DOI : 10.1016/0038-0717(78)90099-8

N. Fierer, J. P. Schimel, and P. A. Holden, Influence of Drying-Rewetting Frequency on Soil Bacterial Community Structure, Microbial Ecology, vol.45, issue.1, pp.63-71, 2003.
DOI : 10.1007/s00248-002-1007-2

J. H. Cornelissen, Foliar pH as a new plant trait: can it explain variation in foliar chemistry and carbon cycling processes among subarctic plant species and types?, Oecologia, vol.428, issue.2, pp.315-326, 2006.
DOI : 10.1007/s00442-002-1155-6

N. T. Hobbs, H. Andren, J. Persson, M. Aronsson, and G. Chapron, Native predators reduce harvest of reindeer by S??mi pastoralists, Ecological Applications, vol.22, issue.5, pp.1640-1654, 2012.
DOI : 10.3354/cr032119

B. M. Bolker, Generalized linear mixed models: a practical guide for ecology and evolution, Trends in Ecology & Evolution, vol.24, issue.3, pp.127-135, 2009.
DOI : 10.1016/j.tree.2008.10.008

N. Fierer, J. M. Craine, K. Mclauchlan, and J. P. Schimel, LITTER QUALITY AND THE TEMPERATURE SENSITIVITY OF DECOMPOSITION, Ecology, vol.86, issue.2, pp.320-326, 2005.
DOI : 10.1029/95GB02746

R. T. Conant, Temperature and soil organic matter decomposition rates ? synthesis 584

V. C. Smith and M. A. Bradford, Do non-additive effects on decomposition in litter-mix 586 experiments result from differences in resource quality between litters? Oikos, pp.235-587, 2003.

A. Gelman, Scaling regression inputs by dividing by two standard deviations, Statistics in Medicine, vol.96, issue.15, p.589
DOI : 10.1007/978-1-4757-3462-1

R. H. Baayen, D. J. Davidson, and D. M. Bates, Mixed-effects modeling with crossed random effects for subjects and items, Journal of Memory and Language, vol.59, issue.4, pp.390-412, 2008.
DOI : 10.1016/j.jml.2007.12.005

URL : http://www.mpi.nl/world/persons/private/baayen/publications/baayenDavidsonBates.pdf

S. Nakagawa and H. Schielzeth, from generalized linear mixed-effects models, Methods in Ecology and Evolution, vol.22, issue.2, pp.133-142, 2013.
DOI : 10.1002/sim.1572

R. Thanks, M. Pas, . Hundscheid-for, and . Assistance, Research was supported by 597 grants to MAB from the U The Royal 598, S. National Science Foundation