A Genetic Tool to Quantify trans-Translation Activity in Vivo

Abstract : In bacteria, trans-translation is the main quality control mechanism for rescuing ribosomes arrested during translation. This key process is universally conserved and plays a critical role in the viability and virulence of many pathogens. We developed a reliable in vivo double-fluorescence reporter system for the simultaneous quantification of both trans-translation and the associated proteolysis activities in bacteria. The assay was validated using mutant bacteria lacking tmRNA, SmpB, and the ClpP protease. Both antisense tmRNA-binding RNA and a peptide mimicking the SmpB C-terminal tail proved to be potent inhibitors of trans-translation in vivo. The double-fluorescent reporter was also tested with KKL-35, an oxadiazole derivative that is supposed to be a promising trans-translation inhibitor, and it surprisingly turns out that trans-translation is not the only target of KKL-35 in vivo.
Document type :
Journal articles
Liste complète des métadonnées

https://hal-univ-rennes1.archives-ouvertes.fr/hal-01659526
Contributor : Xavier Chard-Hutchinson <>
Submitted on : Friday, December 8, 2017 - 2:50:25 PM
Last modification on : Thursday, April 11, 2019 - 3:20:07 PM

Identifiers

Citation

Carlos Blanco, Reynald Gillet, Kevin Macé, Fanny Demay, Charlotte Guyomar, et al.. A Genetic Tool to Quantify trans-Translation Activity in Vivo. Journal of Molecular Biology, Elsevier, 2017, 429, pp.3617-3625. ⟨10.1016/j.jmb.2017.10.007⟩. ⟨hal-01659526⟩

Share

Metrics

Record views

60