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Abstract 

Computational imaging techniques are of great interest to simplify the architecture of imaging devices 

since random illuminations of a scene enable its reconstruction from few measurements by solving an 

inverse problem. Here we present a passive system for imaging of thermal sources in the microwave 

range from the cross-correlation of noise signals recorded by only two channels. The channels are 

attached to a high Q-factor chaotic cavity with a leaky aperture on its front side. The spatial distribution 

of noise sources is encoded onto the broadband spectrum of the cross-correlation and can be 

reconstructed from the sensing matrix mapping the uncorrelated far-field speckle patterns of the cavity 

onto a set of frequencies. We demonstrate imaging of localized and extended thermal sources and show 

that the polarization of those radiations can be discriminated. Moreover, we exhibit the effectiveness of 

the proposed system as a compressive imaging device which exploits the natural randomness of the 

speckle patterns. We believe that these results are a promising step for the design of real time and low 

cost microwave radiometers. 

 

Computational imaging (CI) has received considerable attention in recent years. Instead of measuring 

the field on an array of detectors, the spatial information of an object or a scene is encoded onto 

independent illuminations collected by a single detector. Using the knowledge of the sensing matrix 

between the detector and the discretized volume of the scene for each illumination, the object can be 

reconstructed by solving an inverse problem. This makes it possible to strongly reduce the number of 

detectors and hence to design cheaper and faster imaging devices. In optics, the single pixel camera 

exploits the reflection of the incoming field on a spatial light modulator (SLM) for which independent 

coded projections are generated at a high frequency rate.1 Such a CI scheme has later been extended to 

the THz regime.2,3 A multiple scattering medium can also act as a compressive medium to limit the 

number of sensors.4 

Similarly, the ghost imaging (GI) technique exploits spatially uncorrelated illuminations of an object to 

reconstruct its spatial distribution from measurements with a single detector. GI has originally been 

introduced with entangled photons5 and then generalized to classical light.6,7 An object illuminated with 

a spatially incoherent source is reconstructed from the aggregate correlation between the intensity 

collected with a bucket detector bearing no spatial resolution and a reference giving the intensity in the 

focal plane of the object. In classical GI, this reference is obtained by splitting the beam from a 

pseudothermal source and measuring the field that has not passed through the object with a multi-pixel 

camera. In computational GI, the independent illuminations are obtained by shaping the incoming field 

with pseudorandom patterns generated from a controlled SLM so that only a single detector is required.8-
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10 GI has demonstrated its ability to image objects in turbid media11,12 and has even been extended to 3D 

imaging.13-15 GI can also be combined with compressive sensing approaches to solve the inverse imaging 

problem from a reduced number of measurements by leveraging the sparsity of the scene.10,15-18 

In acoustics19,20 and microwaves21-26, the spatial information can alternatively be encoded onto the 

spectrum of the broadband impulse response between an antenna and the scene. A highly dispersive 

medium such as a leaky chaotic cavity21-23, a metamaterial24,27 or a frequency diverse metasurface25,26,28 

can be thought of as hardware sensing mechanisms for imaging. More specifically, the natural 

reverberation of the wave propagation inside the medium emulates random illuminations of a scene at 

different frequencies. These systems exploit the conversion between spatial and spectral degrees of 

freedom which are also at the core of the time reversal technique in complex media for spatio-temporal 

focusing with a single broadband antenna.29,30 The number of uncorrelated speckles over the bandwidth 

𝐵 is 𝑁𝜔 = 𝐵𝜏, where 𝜏 is the typical decay time of the intensity within the cavity. Albeit random, the 

speckle patterns are deterministic and the far-field sensing operator 𝐻(𝜔, 𝑟) is obtained by scanning the 

near-field of the aperture of the medium and propagating it to the scene. An object can then be 

reconstructed from the measurement of a single spectrum without the need of an active control over an 

external device to modulate the incoming field.  

Reducing the number of radiofrequency channels in radar imaging is of great interest to achieve real-

time images.21 This is even more crucial for passive systems for which the distribution of thermal sources 

is reconstructed.31 In the Rayleigh-Jeans limit32, the power spectral density of thermal radiations is given 

by 𝑃 = 𝜖𝑘𝐵𝑇𝑎𝑏𝑠, where 𝜀 is the emissivity, 𝑇𝑎𝑏𝑠 is the temperature and 𝑘𝐵 is the Boltzmann’s constant. 

A synthetic aperture interferometric radiometer exploits measurements of the cross-correlation between 

noise signals simultaneously performed over each pairs of an array of receiving antennas.33,34 This 

creates a large aperture to obtain high resolution images. However, for ambient noise sources in the 

microwave range, the cross-correlation function has to be integrated over a long time to obtain a 

sufficient signal-to-noise ratio. 

In this article, we demonstrate passive imaging of thermal sources in the X-band frequency regime using 

a leaky chaotic cavity attached to two ports. We reconstruct the distribution of localized and extended 

thermal sources from the single cross-correlation of two recorded signals. Moreover, we show that the 

polarization of the sources can be discriminated and that the use of compressive sensing techniques 

improves significantly the reconstruction of sparse objects on a scene. 

Thermal radiations are modeled by noise sources 𝑛(𝑟, 𝜔) with random distribution in a volume V. For 

the sake of simplicity, we consider a single polarization of thermal sources, the following formalism 

being similar for the other polarization. The signals recorded on two ports of a computational imaging 

system during an integration time 𝑇 are cross-correlated, 𝑐12(𝜏) =
1

𝑇
∫ 𝑠1(𝑡)𝑠2(𝑡 + 𝜏)𝑑𝑡

𝑇

0
. This gives 

equivalently in the frequency domain 𝑐12(𝜔) = 𝑠1(𝜔)𝑠2
∗(𝜔) =

∬ 𝐻1(𝜔, 𝑟)𝐻2
∗(𝜔, 𝑟′)𝑛(𝑟, 𝜔)𝑛∗(𝑟′, 𝜔)𝑑𝑟𝑑𝑟′

𝑉
, where 𝐻1,2(𝜔, 𝑟) are the sensing functions associated to 

port 1 and port 2, respectively. The noise correlation function in the Rayleigh-Jeans limit32 satisfies 

〈𝑛(𝑟, 𝜔)𝑛∗(𝑟′, 𝜔′)〉 = 𝑘𝐵𝑇𝑒𝑞(𝑟)𝛿(𝜔 − 𝜔′)𝛿(𝑟 − 𝑟′). Because thermal sources are spatially 

uncorrelated, the average cross-correlation gives for 𝑇 → ∞, 

𝑐12(𝜔) = ∫ 𝐻(𝜔, 𝑟)𝑘𝐵𝑇𝑒𝑞(𝑟)
𝑉

𝑑𝑟,     (1) 

where 𝐻(𝜔, 𝑟) = 𝐻1(𝜔, 𝑟)𝐻2
∗(𝜔, 𝑟). The scene is discretized over 𝑁 pixels and sensed by M 

measurements so that the matrix 𝑯 is of dimension 𝑀x𝑁. Eq. (1) hence yields 𝒄𝟏𝟐 = 𝑯𝒙, with 𝑥(𝑟) =
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𝑘𝐵𝑇(𝑟). The reconstruction of the noise sources requires solving an inverse problem that can be 

formulated in the following generic way: 

min   
𝒙 ∈ ℝ+

‖𝒙‖𝑝 subject to ‖𝒄𝟏𝟐 − 𝑯𝒙‖𝟐 ≤ 𝛿.   (2) 

The unknown 𝒙 is a real positive quantity (see Eq. (1)) and the parameter 𝛿 is a positive scalar to take 

into account inevitable additive noise due to finite integration time T and measurement uncertainties on 

H. In practice, the number of measurements is much smaller than the size of the scene to be reconstructed 

(M≪N) and the underdetermined linear problem admits many solutions. The role of the regularizer 

‖𝒙‖𝑝, that stands for the ℓ𝑝-norm of the vector 𝒙, is to foster a solution that best corresponds to the 

likely composition of the scene to reconstruct. 

The solution 𝑥(𝑟) of Eq. (2) is unique only when the rank of H is equal or greater than N. The efficiency 

of the chaotic cavity imaging system as a compressive sensing setup is therefore linked to its ability to 

scramble the information received from its leaky aperture to the ports. We use an aluminum cavity with 

outer dimensions of 50 x 50 x 30 cm3 (see Fig. 1a). The ports are two coaxial to waveguide transitions 

16094-SF40 attached to two sides of the cavity. The cavity is made chaotic by adding inside three metal 

hemispheres of radius 50 mm on the walls and a deformed corner. An array of 11x11 holes are perforated 

on the front face of the cavity covering an area of 34 x 34 cm2. The diameter of the holes is chosen to 

be 𝜆min /2=12.5 mm, where 𝜆min is the average wavelength corresponding to the higher frequency. 

This ensures a good tradeoff between the overall Q-factor of the cavity and the radiated power.22 This 

is crucial to detect small amplitude noise sources in a passive scenario. 

Using a waveguide transition translated over a plane at a distance of 5 mm from the aperture, we first 

scan the near-field of the cavity on a regular grid of 𝑁′ = 756 positions with steps of 𝜆min/3. The near-

field transmitted fields ℎ1,2(𝑟𝑛, 𝜔) are measured on 𝑀 = 4001 frequencies in steps of 1 MHz from 8 to 

12 GHz using a vectorial network analyzer. The scan is successively carried out for vertical and 

horizontal polarizations of the probe. Due to multiple reflections within the cavity, the two polarizations 

are uncorrelated and statistically equivalent. The amplitude and phase of a single spectrum are shown 

in Fig. 1b. The reconstruction of the matrices 𝑯1,2 on the plane of thermal sources is obtained by 

projecting the near field speckle patterns on the image pixels using the dyadic Green’s functions for 

each polarization, 𝐻1,2(𝜔, 𝑟) = Σ𝑛=1
𝑁′ ℎ1,2(𝑟𝑛, 𝜔)𝐺(𝑟𝑛, 𝑟, 𝜔), where ℎ1,2(𝑟𝑛, 𝜔) are the near-field scans of 

the cavity on positions 𝑟𝑛 for an excitation from ports 1 and 2, respectively, and 𝐺(𝑟𝑛, 𝑟, 𝜔) is the free 

space Green’s function between 𝑟𝑛 and 𝑟. Speckle patterns of 𝐻(𝜔, 𝑟) at three frequencies are presented 

in Fig. 1d. 

The matrix of correlation coefficients between near-field patterns at different frequencies is seen in Fig. 

1c to be nearly diagonal. By computing the spectral field-field correlation function, we find that the 

frequency spacing above which two speckle patterns transmitted through the aperture are statistically 

independent is 𝛿𝑓 = 3 MHz. We therefore estimate the spectral degrees of freedom to be 𝑁𝜔 ∼ 1137 

over the bandwidth. The corresponding quality factor of the cavity is equal to 𝑄 = 2840 at 10 GHz.  

To demonstrate imaging of localized noise sources, we use horn antennas connected to distinct 

amplifiers with high noise temperature and terminated with 50Ω loads. The antennas therefore radiate 

independent noise signals generated by the amplifiers. The signals 𝑠1(𝑡) and 𝑠2(𝑡) at the ports are down-

converted to the [0-4] GHz range with a mixer and a local oscillator at 8 GHz and are recorded with a 

digital sampling oscilloscope with a bandwidth of 6 GHz and a sampling rate of 10 GS/s. 
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Equation (2) is first solved using the popular Tikhonov regularization, case of the ℓ2-norm, which is 

known to improve the conditioning of the problem while providing a direct numerical solution. The 

results are shown for a single source and two sources in Fig. 2a,b respectively. The resolution 𝛿𝑎 is 

determined by the cavity aperture 𝐷. As in synthetic aperture radar imaging, it can be estimated by 𝛿𝑎 =

𝜆min𝐹/𝐷, where 𝐹 is the distance to the target. This is in agreement with the resolution found 

experimentally as shown in Supplementary Material.  

We then explore the signal to noise ratio (SNR) as a function of the number of frequencies used to 

reconstruct the image. Similarly to the GI technique,9,35 the SNR is seen in Fig. 2c to increase as the 

square root of the number of random illuminations, √𝑀, for 𝑀 < 𝑁𝜔. The SNR saturates from 𝑀 > 𝑁𝜔 

since the speckle patterns become slightly correlated. The quality of the reconstruction also increases as 

√𝑇, where 𝑇 is the integration time of the cross-correlation, and reaches a plateau for 𝑇 ∼ 100μs (see 

Fig. 2d) as a consequence of the maximum number 𝑁𝜔. 

To further enhance the SNR, another strategy consists in leveraging the inherent sparsity of most natural 

imaged scenes. The sources are indeed typically located at some particular range in specific directions. 

A convenient mean to foster sparse solutions is to use a ℓ1-norm regularizer, ‖𝒙‖1, as now widely used 

since the seminal works of Donoho, Candès, Tao and Romberg.36-38 They demonstrated that a perfect 

reconstruction can be achieved with high probability from a small number of measurements when the 

sensing matrix H is a random matrix. In the frame of compressive sensing with a chaotic cavity, this 

means that a sparse scene can be properly imaged from the measurement of 𝑐12(𝜔) at only a small 

number of frequencies using ℓ1 minimization. In Fig. 3a, we present the reconstruction of the two 

sources using this sparse promoting regularizer and 𝑀 = 𝑁𝜔. The sources appear at two pixels in perfect 

agreement with the result of Tikhonov regularization.  

In Fig. 3b, we show the probability of successful reconstruction over 20 trials as a function of the number 

of sources K and the number of frequencies 𝑀 randomly chosen from the set of the 𝑁𝜔 independent 

frequencies. To this end, we first record individually the cross-correlation for 16 locations of the horn 

antenna. The cross-correlation 𝑐12(𝜔) is then computed synthetically for a given K by summing K 

signals. The solution of Eq. (2) with the ℓ1-norm regularizer is compared to the image of reference found 

for 𝑀 = 𝑁𝜔. The reconstruction is assumed to be successful when the correlation coefficient between 

the reconstructed and reference images of N=676 pixels is higher than 0.8.  

A sharp transition is observed between unsuccessful and successful recovery. This transition is 

reminiscent of the phase transition introduced by Donoho and Tanner in compressive sensing.39 When 

the entries of the sensing matrix H are statistically independent variables with identical Gaussian 

distribution, a perfect reconstruction from undersampled measurements can indeed be achieved with 

only 𝑂(𝐾log(𝑁/𝐾)) measurements. For K=12, the transition is found experimentally at 𝑀 ∼ 400, 

which is higher than the theoretical level. We explain this increase by the errors inherent to the 

construction of the sensing matrix H from the near-field scan of the aperture. Indeed, simulations with 

an exact knowledge of H yields a transition at 𝑀 ∼ 100 as expected in theory. 

Finally, to further prove the capabilities of our system for extended thermal sources, we use two 

commercial straight fluorescent lamps (FL) of length 60 cm as thermal sources located at a distance 𝐹 =

0.4 m from the aperture of the cavity. FL behave as broadband microwave noise sources40 with a 

temperature which is approximately the electron temperature of the gas discharge.41,42 Those thermal 

sources are mainly polarized perpendicularly to their axis. FL that are turned on indeed behave as 

metallic reflectors for an incident wave polarized along their axis.43 This is confirmed by measuring the 

intensity transmitted and reflected by four vertical FL turned off and on for the two polarizations. 
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Kirchhoff’s law of thermal radiation states that the emissivity 𝜀 of an object is equal to its absorptivity 

𝛼. We estimate 𝜀 ∼ 0.2 and 𝜀 ∼ 0.75 for vertical and horizontal polarizations, respectively.  

We first aim to image two FL that are vertically positioned along y-axis with a spacing of 11 cm. The 

recorded signals are amplified with two low noise amplifiers (LNA) with a gain of 51 dB within the [8-

12] GHz frequency range and an equivalent temperature of 67 K. Because the noise emitted by the LNAs 

are also radiated by the ports inside the cavity, this yields a coherent contribution to the cross-correlation 

function. We mitigate this unwanted contribution by subtracting the noise cross-correlation in absence 

of the FL. We solve Eq. (2) with a sensing matrix corresponding successively to the horizontal and 

vertical polarizations. The reconstruction of two vertical FL from the horizontally polarized sensing 

matrix is shown in Fig. 4a for an integration time of 𝑇 = 1 𝑚𝑠. The two FL clearly appear at horizontal 

positions 0.07 m and 0.18 m. In contrast the use of the vertically polarized sensing matrix yields a noisy 

image (see Fig. 4b). The tubes are then rotated and a clear reconstruction of the FL is obtained only 

using the sensing matrix computed from the vertically polarized scan (see Fig. 4c,d). This result 

demonstrates the capacity of our system to image extended thermal sources and discriminate their 

polarization with only two detectors.  

In conclusion, we have achieved experimentally the reconstruction of localized and extended thermal 

sources in the microwave range with only two ports of a leaky chaotic cavity using computational 

imaging and compressive sensing techniques. We also have demonstrated that our system makes it 

possible to separate the polarization of thermal sources. This work opens the door to the design of 

radiometers with real-time imaging capabilities of great interest for medical imaging, remote sensing or 

security screening applications. Further studies will be dedicated to demonstrate that it is even possible 

to achieve passive imaging from the auto-correlation of the noise signal at a single port yielding an 

intensity-only imaging system.44 

This publication is supported by the European Union through the European Regional Development Fund 

(ERDF) and by the french region of Brittany and Rennes Métropole through the CPER Project SOPHIE 

/ STIC & Ondes. The authors would also like to acknowledge Cécile Leconte for her help in automating 

the scan.  
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FIGURES 

 

Fig 1. (a) Photography of the leaky cavity with an aperture made of drilled holes on its front side. Inset: 

Interior of the chaotic cavity. (b) Amplitude and phase of a single transmitted field from port 1 through 

the aperture. (c) Spectral field correlation matrix between 9.5 and 10.5 GHz. (d) Three speckle patterns 

at f=9.5 GHz, f=9.75 GHz and f=10 GHz at a distance 𝐹 = 0.5 m from the aperture computed from the 

propagation of the near-field scan of the cavity.  
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Fig. 2: (a,b) Reconstruction of one (a) and two (b) noise sources at a distance 𝐹 = 0.5 m from the 

aperture of the cavity. (c) SNR as a function of the number of frequencies 𝑀 used to reconstruct the 

image. The circles are measurements and the red line shows √𝑀 dependence (d) SNR as a function of 

the integration time of the cross-correlation 𝑇. Experimental results (blue dots) are compared to an 

increase as √𝑇. 

 

 

Fig. 3: (a) Reconstruction of two noise sources by solving Eq. (2) using a sparse recovery approach  (ℓ1 

regularization). (b) Probability of success recovery between 0 and 1 for K noise sources (K between 1 

and 10) for N=676 pixels. The scale indicates the percentage of successful recovery from M 

measurements of the sparse scene. A perfect recovery is achieved in the white region. 
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Fig. 4: Reconstruction of broadband extended thermal sources which are two straight fluorescent lamps 

spaced by 0.11 m and located at a distance 𝐹 = 0.4 m from the aperture of the cavity. (a,b) The tubes 

are positioned along the y-axis and the image is computed from the horizontal (a) and vertical 

polarizations (b). (c,d) the tubes are positioned along the x-axis and the image is computed from the 

horizontal (c) and vertical (d) polarizations. 
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