














crystallographic data for this paper. These data can be obtained free of charge from at

the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table 1. Selected crystallographic data of compounds 1-Se-a and 1-Se-b.

1-Se-a 1-Se-b
-0.5(CH2Cl2)-(C4Hg0)
Formula C36HgsCu1112012P6Seq2 C76.5H69ClCu11F6l4P7Se12
Fw 3048.91 3524.61
Space group P21/n Pnma
a A 14.4102(13) 22.5155(8)
b, A 23.152(2) 18.1031(6)
c, A 24.441(2) 26.3814(9)
a, deg 90 90
B, deg 91.922(2) 90
y, deg 90 90
V, A3 8149.4(13) 10753.1(6)
Z 4 4
Pcalcd, Mg m-3 2.485 2.177
U, mm-1 9.843 7.515
T, K 296(2) 296(2)
measured reflections 83115 93688
independent reflections 14340 [Rinc = 0.0601] 9795 [Rint = 0.0444]
Omax, deg. / Completeness, % 25.0 /100.0 25.0 /100.0
restraints / parameters 1123 /825 656 / 445
R19, wR2b [1 > 20(1)] 0.0572,0.1604 0.0591, 0.1593
R19, wR2Pb (all data) 0.0817,0.1815 0.0772,0.1775
goodness of fit 1.033 1.083
largest diff peak and hole, e/A3 1.592 and -2.442 2.188 and -1.581

aR1=X/|F, - Fc||/%F,|.b WR2 = {E[w(F/? - F2)2] /2 [w(Fo2)?]}1/2.

Results and discussions
Structural analysis of the computed undeca- and dodeca-nuclear models

The geometries of the undecanuclear models [Cu11(po-1)(u3-1)3{E2P(OH)2}6]* ( E =
S, Se), hereafter labelled 1-S and 1-Se, were first optimized enforcing ideal Csn
symmetry. The principal structural parameters (Table 2) are consistent with those
reported in the X-ray structures of [Agi1(p9e-Se)(us3-Br)sz{Se2P(OR)2}s] (R = Et, iPr, and
2Bu],*2%3  [Agi1(po-1)(3-1)3{E2P(O'Pr)2}e](PFe) [E= S, Se]*® and [Cui1(uo-Se)(us-
Br)3{Se2P(OR)2}¢] (R = Et, Pr, 'Pr) clusters.>* The eleven copper atoms occupy the
vertices of a pentacapped trigonal prism with an iodide at the center of the polyhedron

(Figure 1, left). The six Cua atoms correspond to the trigonal prism vertices, the three






Not considering the bonds with the central iodide, all the metal atoms are in an
approximate trigonal-planar configuration, the Cu, and Cup, atoms being bonded to two
chalcogens and one capping iodide and the Cu. atoms to three chalcogens. It is
noteworthy that in the case of the di-seleno species, geometry optimizations with the C3;,
symmetry constraint does not lead to an energy minimum at our level of theory, but
rather to a transition state showing a single (small) imaginary frequency (177 cm-1). A
true energy minimum was obtained reducing symmetry constraint to C3, corresponding
to a slight displacement of the encapsulated iodide along the C3 axis away from the
center of the metallic cage. This leads to two different Cuc-I distances of 3.610 and 3.924
A (both equal to 3.750 A when C3» symmetry constraint is assumed). The symmetry
lowering is associated to a very small stabilization energy (AE= 0.004 eV), so that the
encapsulated iodide is nearly free to move along the C3 axis with quite large
displacements. As a consequence, in the following the discussion will be mainly based in

on the ideal cluster with C3;, symmetry.

(C3n)
Figure 1. Optimized structure of the 1-S model (left) and its Cui1(po-I)(p3-I) core (right).

The most significant structural data of the optimized geometries of the
dodecanuclear models [Cuiz2(p12-1)(p3-1)4{E2PHz2}6]* (E = S, 2-S; Se, 2-Se) are given in
Table 2. They were first considered in their ideal T4 symmetry (Figure 2). Their metallic
skeleton can be described as a cuboctahedron (more precisely a cantellated
tetrahedron), with two different Cu-Cu edges. Thus, the encapsulated iodide is equally

bonded to the twelve metal atoms and the Cuizl core is of idealized Or symmetry. The



Cu-(p12-1) distances are slightly larger than the Cu-(po-I) distances found in the
undecanuclear series (Table 2). Moreover, the computed Cu-(p12-1) bond lengths (12 x
3.236 A; E = S) fit nicely with that observed in the X-ray structure of the related
[PyH][{TpMo(u3-S)aCus}a(piz-1)] [{TpMo(us-S)}aCurz(piz-)] (12 x 3.138-3.280 A, avg.
3.195 A).27 Similarly, the optimized Cu-Cu distances (12 x 3.059 A and 12 x 3.408 A) are
in good agreement with the experimental ones (12 x 3.098-3.144, avg. 3.122 A, and 12 x
3.214-3.309, avg. 3.269 A).27 The square faces of the metallic core are bridged by a
dichalcogenophosphate ligand (p2, pz) and four out of the eight triangular faces are
capped by a pz-iodide (Figure 2). As a result, each metal atom is bonded to one iodine
and two chalcogen atoms in a slightly pyramidalized coordination mode (not

considering bonding with the encapsulated iodine).

(Ta)
Figure 2. Optimized structure of the [Cuiz(p12-1)(u3-1)4{S2PHz2}s]* (2-S) model.

As in the case of its undecanuclear relative, the diselenophosphate species was
not found to be an energy minimum in its highest (T4) symmetry possible (Table 2). The
minimum on the potential energy surface corresponds to a slightly distorted structure of
C3 symmetry. Furthermore, in analogy with the undecanuclear diselenophosphate
cluster, the energy difference is small (AE= 0.04 eV), suggesting an easy displacement of
the encapsulated atom around the center of the cuboctahedral cage. In the followings,

the discussion will be mainly based on the ideal cluster with T; symmetry.

Bonding analysis of the computed models
Considering first the clusters as empty in both species (no encapsulated atom), all
the copper(I) centers lie in an approximate trigonal-planar coordination mode.

Therefore, each metal atom is a 16-electron center and bears an accepting orbital of



large 4p. character, which points towards the center of the cage. In the whole cage, the
individual 4p.-type orbitals give rise to a set of 11 or 12 empty combinations, at least
four of which have the proper symmetry to interact in a bonding way with the occupied
5s and 5p AOs of iodide. This situation is sketched in Figure 3 in the case of a [Cu12(p12-
[)(u3-1)4{E2POR2}s]* (E = S, Se) cluster, assuming On pseudo-symmetry. It should be
noted that the weak destabilizing interaction occurring between some of the 3d-block
combinations and the iodide AOs is not considered in Figure 3. The computed Kohn-
Sham orbital diagrams of our undeca- and dodeca-nuclear models are consistent with
this qualitative model. Those of [Cui1(po-1)(p3-1)3{Se2P(OH)2}6]* and [Cuiz(pi2-1)(us3-
[)4{S2POHz}6]* are shown in Figure 4. Those of their homologs are provided in the SI
(Figures S1 and S2).
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+
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HOMO
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Figure 3. Qualitative MO diagram illustrating the interaction between the empty cage
[Cu1z(u3-1)a{E2POR2}s]?* (E = S, Se) and its I host in the [Cuiz(pi2-1)(n3-1)4{E2POR2}6]* (E
=S, Se) cluster in the ideal O, pseudo-symmetry.
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Furthermore, the Cua/x-Cua/a distances (4.097 A vs. 2.795 A, E= S) indicate that
the trigonal prism architecture is strongly distorted. However, the Cua/b-Cucenter bond
lengths remain of the same order of magnitude when going from the ideal C3, symmetry
to the C3 one. It should also be noticed that the nine Cu-Cu- distances are nearly identical

(~2.55 A). This result is at variance with the behavior of undecanuclear clusters

containing an iodide at the center, in which there are six long (~3.2 A) and three short

(~2.90 A) distances (Table 5). The sum of Wiberg indices when X = Cu- is also larger (ca

50 %) than when X= I-. Furthermore, in opposition to the X= I- cases, the Wiberg indices

for X = Cu- are in the same order of magnitude for the nine Cu-Cu- interactions (Table 6).
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Figure 8. Qualitative MO diagram illustrating the interaction between the empty cage
[CU12(M3-I)4{E2POR2}6]2+ (E =S, Se) and its I- host in the [Culz(mz-Cu)(u3-l)4{E2POR2}6]+
(E =S, Se) cluster. The ideal O, pseudosymmetry of the Cui2(p12-Cu) core is considered.

The optical behaviors of the hypothetical clusters were also investigated.
Concerning the dodecanuclear clusters, TD-DFT calculations performed with the ideal
symmetry constraint demonstrated that the highest absorption wavelengths fall around
530 and 560 nm for respectively the dithio and diseleno ligands. For the dithio ligand,
this excitation can be mainly assigned to a HOMO to LUMO transition and corresponds to
a charge transfer from the 1S jellium orbital to the 1P ones (Figure 8 and 9) which can
be characterized by a strong donation of the centered atom, the ligands and the metallic
cage to the metallic cage. Indeed, the cluster core represents about 60 % of the triply
degenerate LUMO composition. For the diseleno ligands, the transition is more mixed
but the trend is identical as for the dithio case, i.e. a charge transfer from the 1S jellium

to the 1P jellium one.
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Figure 9. Kohn-Sham MO diagrams of [Cui1(po-Cu)(ps-1)3{S2P(OH)z2}6¢]* (left) and
[Cu1z(p12-Cu)(ps-1)4{S2PH2}6]* (right).

Concerning the hypothetical undenuclear cluster with, for instance, the
dithioligands, two strong excitations have been computed enforcing the C3; respectively
at 511 (e’) and 493 nm (a”) (Figure 9). The highest excitation wavelength corresponds to
a transition from the HOMO (a’) to the LUMO (e’). The second excitation occurs from
HOMO to LUMO+2 (a”). Both transitions correspond to a charge transfer from the
metallic core and the centered Cu- to the metallic cage.

The luminescence properties of the hypothetical clusters have also been
investigated. In general, these clusters are known to be phosphorescent therefore only
this type of luminescence has been investigated. The computed electronic
phosphorescence wavelengths were 763, 872, 698 and 686 nm for respectively 5-S, 5-
Se, 6-S and 6-Se. These values, close to the near-infrared region, suggest possible

applications in devices such as sensors, OLED embedded systems, etc.
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Conclusions

This paper reports the main results of a combined experimental and theoretical
analysis of large ligated copper(I) clusters encapsulating iodide or copper. DFT analysis
of the model clusters 1-S, 1Se, 2-S and 2-Se indicates strong iono-covalent interaction
between the encapsulated iodide and its copper(I) host cage. The cavity offered by these
cages is particularly suited for encapsulating large anions such as iodide. Our
computations point out a significant difference of volume between the empty and
iodide-encapsulating cages. This result suggests that empty cages are likely not stable
enough to be detected experimentally. Consistently, only undeca- and dodeca-nuclear
clusters containing iodine have been isolated so far, in particular the two above-
reported new clusters 1-Se-a and 1-Se-b. Their structure and optical properties are
consistent with the computed results. Interestingly, their photoluminescent properties
have been rationalized with the help of TD-DFT calculations including vibronic
contributions to simulate the phosphorescence spectra. The possibility for such Cu(I)
cages to encapsulate a formally Cu- anion®! has also been investigated owing to its
relatively similar size as I~. Such hypothetical species are predicted to be stable 2-
electron superatomic species and TD-DFT calculations predict phosphorescence in the

near-infrared region.68

Supplementary Information
Kohn-Sham orbital energy levels [Cui1(po-1)(p3-1)3{S2P(OH)z2}6]+ and [Cuiz2(p1z-1)(ps-
[)4{Se2PHz}6]*. Absorption, excitation, and emission data of compound 1-Se-a and 1-Se-

b. Optimized ground state structures of the computed clusters (mol2 file).
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by contacting the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge
CB2 1EZ, UK; fax: +44 1223 336033.
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Synopsis. A combined computational/experimental investigation has been carried out
on undeca- and dodeca-nuclear Cu(I) cages encapsulating iodide. These compounds
exhibit interesting photoluminescent properties, which have been fully investigated by
TD-DFT calculations using the vibronic approach to simulate the phosphorescent
spectra. Calculations indicate that replacing formally the encapsulated iodide by a Cu-
anion should also lead to stable species which can be described as 2-electron

superatoms with near-IR photoluminecent behavior.
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